__init__.py 9.3 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import tarfile
import paddle_serving_server as paddle_serving_server
from version import serving_server_version


class OpMaker(object):
    def __init__(self):
        self.op_dict = {
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_single_kv": "GeneralSingleKVOp",
            "general_dist_kv": "GeneralDistKVOp"
        }

    # currently, inputs and outputs are not used
    # when we have OpGraphMaker, inputs and outputs are necessary
    def create(self, name, inputs=[], outputs=[]):
        if name not in self.op_dict:
            raise Exception("Op name {} is not supported right now".format(
                name))
        node = server_sdk.DAGNode()
        node.name = "{}_op".format(name)
        node.type = self.op_dict[name]
        return node


class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node):
        if len(self.workflow.nodes) >= 1:
            dep = server_sdk.DAGNodeDependency()
            dep.name = self.workflow.nodes[-1].name
            dep.mode = "RO"
            node.dependencies.extend([dep])
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
        self.resource_conf = None
        self.engine = None
        self.memory_optimization = False
        self.model_conf = None
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
        self.general_model_config_fn = "general_model.prototxt"
        self.workdir = ""
        self.max_concurrency = 0
        self.num_threads = 0
        self.port = 8080
        self.reload_interval_s = 10
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

    def _prepare_engine(self, model_config_path, device):
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()

        if self.engine == None:
            self.engine = server_sdk.EngineDesc()

        self.model_config_path = model_config_path
        self.engine.name = "general_model"
        self.engine.reloadable_meta = model_config_path + "/fluid_time_file"
        os.system("touch {}".format(self.engine.reloadable_meta))
        self.engine.reloadable_type = "timestamp_ne"
        self.engine.runtime_thread_num = 0
        self.engine.batch_infer_size = 0
        self.engine.enable_batch_align = 0
        self.engine.model_data_path = model_config_path
        self.engine.enable_memory_optimization = self.memory_optimization
        self.engine.static_optimization = False
        self.engine.force_update_static_cache = False

        if device == "cpu":
            self.engine.type = "FLUID_CPU_ANALYSIS_DIR"
        elif device == "gpu":
            self.engine.type = "FLUID_GPU_ANALYSIS_DIR"

        self.model_toolkit_conf.engines.extend([self.engine])

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

    def _prepare_resource(self, workdir):
        if self.resource_conf == None:
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
                fout.write(str(self.model_conf))
            self.resource_conf = server_sdk.ResourceConf()
            self.resource_conf.model_toolkit_path = workdir
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

    def load_model_config(self, path):
        self.model_config_path = path
        self.model_conf = m_config.GeneralModelConfig()
        f = open("{}/serving_server_conf.prototxt".format(path), 'r')
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
        # check config here
        # print config here

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
        device_version = "serving-gpu-"
        floder_name = device_version + serving_server_version
        tar_name = floder_name + ".tar.gz"
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
        self.server_path = os.path.join(self.module_path, floder_name)
        if not os.path.exists(self.server_path):
            print('Frist time run, downloading PaddleServing components ...')
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                print('Download failed')
                if os.path.exists(tar_name):
                    os.remove(tar_name)
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
                finally:
                    os.remove(tar_name)
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
        else:
            os.system("mkdir {}".format(workdir))
        os.system("touch {}/fluid_time_file".format(workdir))

        self._prepare_resource(workdir)
        self._prepare_engine(self.model_config_path, device)
        self._prepare_infer_service(port)
        self.workdir = workdir

        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

    def run_server(self):
        # just run server with system command
        # currently we do not load cube
        self.download_bin()
        command = "{} " \
                  "-enable_model_toolkit " \
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
                  "-workflow_file {} ".format(
                      self.bin_path,
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
                      self.workdir,
                      self.workflow_fn)
        os.system(command)