model_list.py 3.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
from collections import OrderedDict


class ServingModels(object):
    def __init__(self):
        self.model_dict = OrderedDict()
        #senta
        for key in [
                "senta_bilstm", "senta_bow", "senta_cnn", "senta_gru",
                "senta_lstm"
        ]:
            self.model_dict[
                key] = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/" + key + ".tar.gz"
        #image classification
M
MRXLT 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        for key in [
                "alexnet_imagenet",
                "darknet53-imagenet",
                "densenet121_imagenet",
                "densenet161_imagenet",
                "densenet169_imagenet",
                "densenet201_imagenet",
                "densenet264_imagenet"
                "dpn107_imagenet",
                "dpn131_imagenet",
                "dpn68_imagenet",
                "dpn92_imagenet",
                "dpn98_imagenet",
                "efficientnetb0_imagenet",
                "efficientnetb1_imagenet",
                "efficientnetb2_imagenet",
                "efficientnetb3_imagenet",
                "efficientnetb4_imagenet",
                "efficientnetb5_imagenet",
                "efficientnetb6_imagenet",
                "googlenet_imagenet",
                "inception_v4_imagenet",
                "inception_v2_imagenet",
                "nasnet_imagenet",
                "pnasnet_imagenet",
                "resnet_v2_101_imagenet",
                "resnet_v2_151_imagenet",
                "resnet_v2_18_imagenet",
                "resnet_v2_34_imagenet",
                " resnet_v2_50_imagenet",
                "resnext101_32x16d_wsl",
                "resnext101_32x32d_wsl",
                "resnext101_32x48d_wsl",
                "resnext101_32x8d_wsl",
                "resnext101_32x4d_imagenet",
                "resnext101_64x4d_imagenet",
                "resnext101_vd_32x4d_imagenet",
                "resnext101_vd_64x4d_imagenet",
                "resnext152_64x4d_imagenet",
                "resnext152_vd_64x4d_imagenet",
                "resnext50_64x4d_imagenet",
                "resnext50_vd_32x4d_imagenet",
                "resnext50_vd_64x4d_imagenet",
                "se_resnext101_32x4d_imagenet",
                "se_resnext50_32x4d_imagenet",
                "shufflenet_v2_imagenet",
                "vgg11_imagenet",
                "vgg13_imagenet",
                "vgg16_imagenet",
                "vgg19_imagenet",
                "xception65_imagenet",
                "xception71_imagenet",
        ]:
M
MRXLT 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            self.model_dict[
                key] = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/" + key + ".tar.gz"

    def get_model_list(self):
        return (self.model_dict.keys())

    def download(self, model_name):
        if model_name in self.model_dict:
            url = self.model_dict[model_name]
            r = os.system('wget ' + url + ' --no-check-certificate')


if __name__ == "__main__":
    models = ServingModels()
    print(models.get_model_list())