DOCKER_IMAGES.md 3.9 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10
# Docker Images

([简体中文](DOCKER_IMAGES_CN.md)|English)

This document maintains a list of docker images provided by Paddle Serving.

## Get docker image

You can get images in two ways:

B
fix doc  
barrierye 已提交
11
1. Pull image directly from `hub.baidubce.com ` or `docker.io` through TAG:
B
barrierye 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25

   ```shell
   docker pull hub.baidubce.com/paddlepaddle/serving:<TAG> # hub.baidubce.com
   docker pull paddlepaddle/serving:<TAG> # hub.docker.com
   ```

2. Building image based on dockerfile

   Create a new folder and copy Dockerfile to this folder, and run the following command:

   ```shell
   docker build -t <image-name>:<images-tag> .
   ```

B
barrierye 已提交
26

B
barrierye 已提交
27

B
barrierye 已提交
28 29 30
## Image description

Runtime images cannot be used for compilation.
J
Jiawei Wang 已提交
31
If you want to customize your Serving based on source code, use the version with the suffix - devel.
B
barrierye 已提交
32

B
fix doc  
barrierye 已提交
33 34 35 36 37 38
|                         Description                          |   OS    |             TAG              |                          Dockerfile                          |
| :----------------------------------------------------------: | :-----: | :--------------------------: | :----------------------------------------------------------: |
|                         CPU runtime                          | CentOS7 |            latest            |              [Dockerfile](../tools/Dockerfile)               |
|                       CPU development                        | CentOS7 |         latest-devel         |        [Dockerfile.devel](../tools/Dockerfile.devel)         |
|                 GPU (cuda9.0-cudnn7) runtime                 | CentOS7 |    latest-cuda9.0-cudnn7     | [Dockerfile.cuda9.0-cudnn7](../tools/Dockerfile.cuda9.0-cudnn7) |
|               GPU (cuda9.0-cudnn7) development               | CentOS7 | latest-cuda9.0-cudnn7-devel  | [Dockerfile.cuda9.0-cudnn7.devel](../tools/Dockerfile.cuda9.0-cudnn7.devel) |
B
fix doc  
barrierye 已提交
39
|                GPU (cuda10.0-cudnn7) runtime                 | CentOS7 |    latest-cuda10.0-cudnn7    | [Dockerfile.cuda10.0-cudnn7](../tools/Dockerfile.cuda10.0-cudnn7) |
B
fix doc  
barrierye 已提交
40
|              GPU (cuda10.0-cudnn7) development               | CentOS7 | latest-cuda10.0-cudnn7-devel | [Dockerfile.cuda10.0-cudnn7.devel](../tools/Dockerfile.cuda10.0-cudnn7.devel) |
W
wangjiawei04 已提交
41 42 43 44 45 46
|                GPU (cuda10.1-cudnn7-tensorRT6) runtime                 | Ubuntu16 |    latest-cuda10.1-cudnn7    | [Dockerfile.cuda10.1-cudnn7](../tools/Dockerfile.cuda10.1-cudnn7) |
|              GPU (cuda10.1-cudnn7-tensorRT6) development               | Ubuntu16 | latest-cuda10.1-cudnn7-devel | [Dockerfile.cuda10.1-cudnn7.devel](../tools/Dockerfile.cuda10.1-cudnn7.devel) |
|                GPU (cuda10.2-cudnn8-tensorRT7) runtime                 | Ubuntu16|    latest-cuda10.2-cudnn8   | [Dockerfile.cuda10.2-cudnn8](../tools/Dockerfile.cuda10.2-cudnn8) |
|              GPU (cuda10.2-cudnn8-tensorRT7) development               | Ubuntu16 | latest-cuda10.2-cudnn8-devel | [Dockerfile.cuda10.2-cudnn8.devel](../tools/Dockerfile.cuda10.2-cudnn8.devel) |
|                GPU (cuda11-cudnn8-tensorRT7) runtime                 | Ubuntu18|    latest-cuda11-cudnn8   | [Dockerfile.cuda11-cudnn8](../tools/Dockerfile.cuda11-cudnn8) |
|              GPU (cuda11-cudnn8-tensorRT7) development               | Ubuntu18 | latest-cuda11-cudnn8-devel | [Dockerfile.cuda11-cudnn8.devel](../tools/Dockerfile.cuda11-cudnn8.devel) |
B
barrierye 已提交
47

W
wangjiawei04 已提交
48 49 50 51 52 53 54 55 56
**Java Client:**
```
hub.baidubce.com/paddlepaddle/serving:latest-java
```

**XPU:**
```
hub.baidubce.com/paddlepaddle/serving:xpu-beta
```
B
barrierye 已提交
57 58 59 60 61 62 63 64

## Requirements for running CUDA containers

Running a CUDA container requires a machine with at least one CUDA-capable GPU and a driver compatible with the CUDA toolkit version you are using. 

The machine running the CUDA container **only requires the NVIDIA driver**, the CUDA toolkit doesn't have to be installed.

For the relationship between CUDA toolkit version, Driver version and GPU architecture, please refer to [nvidia-docker wiki](https://github.com/NVIDIA/nvidia-docker/wiki/CUDA).