web_service.py 17.0 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
B
barrierye 已提交
15

M
MRXLT 已提交
16
from flask import Flask, request, abort
M
MRXLT 已提交
17
from contextlib import closing
M
MRXLT 已提交
18
from multiprocessing import Pool, Process, Queue
M
MRXLT 已提交
19
from paddle_serving_client import Client
M
MRXLT 已提交
20
from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
M
MRXLT 已提交
21
from paddle_serving_server_gpu.serve import start_multi_card
M
MRXLT 已提交
22
import socket
M
MRXLT 已提交
23 24
import sys
import numpy as np
M
MRXLT 已提交
25
import paddle_serving_server_gpu as serving
M
MRXLT 已提交
26

B
barriery 已提交
27 28
from paddle_serving_server_gpu import pipeline
from paddle_serving_server_gpu.pipeline.util import AvailablePortGenerator
M
MRXLT 已提交
29

B
barriery 已提交
30 31 32 33 34

class DefaultRpcServer(object):
    def __init__(self, available_port_generator):
        self.available_port_generator = available_port_generator
        self.gpus = None
35
        self.rpc_service_list = []
B
barriery 已提交
36 37 38 39 40
        self.server_pros = []
        self.port_list = []
        self.model_config = None
        self.workdir = None
        self.device = None
B
barriery 已提交
41 42 43 44
        self.fetch_vars = None

    def get_fetch_list(self):
        return self.fetch_vars
B
barriery 已提交
45 46 47

    def get_port_list(self):
        return self.port_list
48

M
MRXLT 已提交
49 50 51
    def load_model_config(self, model_config):
        self.model_config = model_config

52
    def set_gpus(self, gpus):
G
guru4elephant 已提交
53
        self.gpus = [int(x) for x in gpus.split(",")]
54

B
barriery 已提交
55
    def _prepare_one_server(self,
B
barrierye 已提交
56 57 58
                            workdir="conf",
                            port=9292,
                            gpuid=0,
M
MRXLT 已提交
59 60 61
                            thread_num=2,
                            mem_optim=True,
                            ir_optim=False):
62 63
        device = "gpu"
        if gpuid == -1:
G
guru4elephant 已提交
64
            device = "cpu"
65
        op_maker = serving.OpMaker()
M
MRXLT 已提交
66 67 68
        read_op = op_maker.create('general_reader')
        general_infer_op = op_maker.create('general_infer')
        general_response_op = op_maker.create('general_response')
B
barrierye 已提交
69

G
gongweibao 已提交
70
        op_seq_maker = OpSeqMaker()
M
MRXLT 已提交
71 72 73
        op_seq_maker.add_op(read_op)
        op_seq_maker.add_op(general_infer_op)
        op_seq_maker.add_op(general_response_op)
B
barrierye 已提交
74

G
gongweibao 已提交
75
        server = Server()
M
MRXLT 已提交
76
        server.set_op_sequence(op_seq_maker.get_op_sequence())
77
        server.set_num_threads(thread_num)
M
bug fix  
MRXLT 已提交
78 79
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)
B
barrierye 已提交
80

81
        server.load_model_config(self.model_config)
G
guru4elephant 已提交
82 83
        if gpuid >= 0:
            server.set_gpuid(gpuid)
84
        server.prepare_server(workdir=workdir, port=port, device=device)
B
barriery 已提交
85 86
        if self.fetch_vars is None:
            self.fetch_vars = server.get_fetch_list()
87 88
        return server

B
barriery 已提交
89
    def _start_one_server(self, service_idx):
90
        self.rpc_service_list[service_idx].run_server()
M
MRXLT 已提交
91

M
MRXLT 已提交
92 93 94 95 96
    def prepare_server(self,
                       workdir="",
                       device="gpu",
                       mem_optim=True,
                       ir_optim=False):
M
MRXLT 已提交
97 98
        self.workdir = workdir
        self.device = device
M
MRXLT 已提交
99
        default_port = 12000
B
barriery 已提交
100 101
        while len(self.port_list) < len(self.gpus):
            self.port_list.append(self.available_port_generator.next())
M
MRXLT 已提交
102

103 104 105
        if len(self.gpus) == 0:
            # init cpu service
            self.rpc_service_list.append(
B
barrierye 已提交
106
                self.default_rpc_service(
M
MRXLT 已提交
107 108 109 110
                    self.workdir,
                    self.port_list[0],
                    -1,
                    thread_num=2,
M
bug fix  
MRXLT 已提交
111 112
                    mem_optim=mem_optim,
                    ir_optim=ir_optim))
113 114 115
        else:
            for i, gpuid in enumerate(self.gpus):
                self.rpc_service_list.append(
B
barriery 已提交
116
                    self._prepare_one_server(
B
barrierye 已提交
117
                        "{}_{}".format(self.workdir, i),
M
MRXLT 已提交
118
                        self.port_list[i],
B
barrierye 已提交
119
                        gpuid,
M
MRXLT 已提交
120
                        thread_num=2,
M
bug fix  
MRXLT 已提交
121 122
                        mem_optim=mem_optim,
                        ir_optim=ir_optim))
M
MRXLT 已提交
123

B
barriery 已提交
124
    def start_server(self):
M
MRXLT 已提交
125
        import socket
126
        for i, service in enumerate(self.rpc_service_list):
B
barriery 已提交
127 128 129
            p = Process(target=self._start_one_server, args=(i, ))
            self.server_pros.append(p)
        for p in self.server_pros:
130 131
            p.start()

M
MRXLT 已提交
132

B
barriery 已提交
133 134 135 136
class DefaultPipelineServer(object):
    def __init__(self, available_port_generator):
        self.server = pipeline.PipelineServer()
        self.available_port_generator = available_port_generator
M
MRXLT 已提交
137

B
barriery 已提交
138 139
    def create_internel_op_class(self, f_preprocess, f_postprocess):
        class InternelOp(pipeline.Op):
B
barriery 已提交
140 141
            # f_preprocess and f_postprocess use variables
            # in closures, so init_op function is not necessary.
B
barriery 已提交
142 143 144 145
            def preprocess(self, input_dicts):
                (_, input_dict), = input_dicts.items()
                preped_data = f_preprocess(input_dict)
                return preped_data
M
MRXLT 已提交
146

B
barriery 已提交
147 148 149 150
            def postprocess(self, input_dicts, fetch_dict):
                (_, input_dict), = input_dicts.items()
                postped_data = f_postprocess(input_dict, fetch_dict)
                return postped_data
M
MRXLT 已提交
151

B
barriery 已提交
152
        return InternelOp
153

B
barriery 已提交
154 155 156 157
    def init_server(self,
                    internel_op_class,
                    internel_op_name,
                    internel_op_endpoints,
B
barriery 已提交
158
                    internel_op_fetch_list,
B
barriery 已提交
159 160 161 162 163 164 165 166 167 168 169
                    internel_op_client_config,
                    internel_op_concurrency,
                    internel_op_timeout=-1,
                    internel_op_retry=1,
                    internel_op_batch_size=1,
                    internel_op_auto_batching_timeout=None):
        read_op = pipeline.RequestOp()
        internel_op = internel_op_class(
            name=internel_op_name,
            input_ops=[read_op],
            server_endpoints=internel_op_endpoints,
B
barriery 已提交
170
            fetch_list=internel_op_fetch_list,
B
barriery 已提交
171 172 173 174 175 176 177 178
            client_config=internel_op_client_config,
            concurrency=internel_op_concurrency,
            timeout=internel_op_timeout,
            retry=internel_op_retry,
            batch_size=internel_op_batch_size,
            auto_batching_timeout=internel_op_auto_batching_timeout)
        response_op = pipeline.ResponseOp(input_ops=[internel_op])
        self.server.set_response_op(response_op)
179

B
barriery 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def prepare_server(self,
                       rpc_port,
                       http_port,
                       worker_num,
                       build_dag_each_worker=False,
                       is_thread_op=False,
                       client_type="brpc",
                       retry=1,
                       use_profile=False,
                       tracer_interval_s=-1):
        default_server_conf = {
            "port": rpc_port,
            "worker_num": worker_num,
            "build_dag_each_worker": build_dag_each_worker,
            "grpc_gateway_port": http_port,
            "dag": {
                "is_thread_op": is_thread_op,
                "client_type": client_type,
                "retry": retry,
                "use_profile": use_profile,
                "tracer": {
                    "interval_s": tracer_interval_s,
                }
            }
        }
        self.server.prepare_server(yml_dict=default_server_conf)
206

B
barriery 已提交
207 208
    def start_server(self):
        self.server.run_server()
209 210


B
barriery 已提交
211 212 213 214 215 216 217 218 219 220
class PipelineWebService(object):
    def __init__(self, name="default"):
        self.name = name
        self.port = None
        self.model_config = None
        self.available_port_generator = AvailablePortGenerator(12000)
        self.default_rpc_server = DefaultRpcServer(
            self.available_port_generator)
        self.default_pipeline_server = DefaultPipelineServer(
            self.available_port_generator)
221

B
barriery 已提交
222 223 224 225 226 227
    def load_model_config(self, model_config):
        self.model_config = model_config
        self.default_rpc_server.load_model_config(model_config)

    def set_gpus(self, gpus):
        self.default_rpc_server.set_gpus(gpus)
M
MRXLT 已提交
228

B
barriery 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def prepare_server(self,
                       workdir="",
                       port=9393,
                       device="gpu",
                       worker_num=4,
                       mem_optim=True,
                       ir_optim=False):
        if not self.available_port_generator.port_is_available(port):
            raise SystemExit(
                "Failed to prepare server: prot({}) is not available".format(
                    port))
        self.port = port

        # rpc server
        self.default_rpc_server.prepare_server(
            workdir=workdir,
            device=device,
            mem_optim=mem_optim,
            ir_optim=ir_optim)
        rpc_endpoints = self.default_rpc_server.get_port_list()
B
barriery 已提交
249
        fetch_list = self.default_rpc_server.get_fetch_list()
B
barriery 已提交
250 251 252 253 254 255 256 257 258 259 260

        # pipeline server
        internel_op_class = self.default_pipeline_server.create_internel_op_class(
            self.preprocess, self.postprocess)
        internel_op_endpoints = [
            "127.0.0.1:{}".format(port) for port in rpc_endpoints
        ]
        self.default_pipeline_server.init_server(
            internel_op_class=internel_op_class,
            internel_op_name=self.name,
            internel_op_endpoints=internel_op_endpoints,
B
barriery 已提交
261
            internel_op_fetch_list=fetch_list,
B
barriery 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            internel_op_client_config="{}/serving_server_conf.prototxt".format(
                self.model_config),
            internel_op_concurrency=worker_num)
        self.default_pipeline_server.prepare_server(
            rpc_port=self.available_port_generator.next(),
            http_port=self.port,
            worker_num=worker_num)

    def run_service(self):
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address: http://{}:{}/prediction"
              .format(localIP, self.port))
        self.default_rpc_server.start_server()
        self.default_pipeline_server.start_server()
M
MRXLT 已提交
277

B
barriery 已提交
278 279
    def preprocess(self, feed_dict):
        return feed_dict
M
MRXLT 已提交
280

B
barriery 已提交
281 282
    def postprocess(self, feed_dict, fetch_dict):
        return fetch_dict
B
barriery 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483


class WebService(object):
    def __init__(self, name="default_service"):
        self.name = name
        self.gpus = []
        self.rpc_service_list = []

    def load_model_config(self, model_config):
        self.model_config = model_config

    def set_gpus(self, gpus):
        self.gpus = [int(x) for x in gpus.split(",")]

    def default_rpc_service(self,
                            workdir="conf",
                            port=9292,
                            gpuid=0,
                            thread_num=2,
                            mem_optim=True,
                            ir_optim=False):
        device = "gpu"
        if gpuid == -1:
            device = "cpu"
        op_maker = serving.OpMaker()
        read_op = op_maker.create('general_reader')
        general_infer_op = op_maker.create('general_infer')
        general_response_op = op_maker.create('general_response')

        op_seq_maker = OpSeqMaker()
        op_seq_maker.add_op(read_op)
        op_seq_maker.add_op(general_infer_op)
        op_seq_maker.add_op(general_response_op)

        server = Server()
        server.set_op_sequence(op_seq_maker.get_op_sequence())
        server.set_num_threads(thread_num)
        server.set_memory_optimize(mem_optim)
        server.set_ir_optimize(ir_optim)

        server.load_model_config(self.model_config)
        if gpuid >= 0:
            server.set_gpuid(gpuid)
        server.prepare_server(workdir=workdir, port=port, device=device)
        return server

    def _launch_rpc_service(self, service_idx):
        self.rpc_service_list[service_idx].run_server()

    def port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        if result != 0:
            return True
        else:
            return False

    def prepare_server(self,
                       workdir="",
                       port=9393,
                       device="gpu",
                       gpuid=0,
                       mem_optim=True,
                       ir_optim=False):
        self.workdir = workdir
        self.port = port
        self.device = device
        self.gpuid = gpuid
        self.port_list = []
        default_port = 12000
        for i in range(1000):
            if self.port_is_available(default_port + i):
                self.port_list.append(default_port + i)
            if len(self.port_list) > len(self.gpus):
                break

        if len(self.gpus) == 0:
            # init cpu service
            self.rpc_service_list.append(
                self.default_rpc_service(
                    self.workdir,
                    self.port_list[0],
                    -1,
                    thread_num=2,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim))
        else:
            for i, gpuid in enumerate(self.gpus):
                self.rpc_service_list.append(
                    self.default_rpc_service(
                        "{}_{}".format(self.workdir, i),
                        self.port_list[i],
                        gpuid,
                        thread_num=2,
                        mem_optim=mem_optim,
                        ir_optim=ir_optim))

    def _launch_web_service(self):
        gpu_num = len(self.gpus)
        self.client = Client()
        self.client.load_client_config("{}/serving_server_conf.prototxt".format(
            self.model_config))
        endpoints = ""
        if gpu_num > 0:
            for i in range(gpu_num):
                endpoints += "127.0.0.1:{},".format(self.port_list[i])
        else:
            endpoints = "127.0.0.1:{}".format(self.port_list[0])
        self.client.connect([endpoints])

    def get_prediction(self, request):
        if not request.json:
            abort(400)
        if "fetch" not in request.json:
            abort(400)
        try:
            feed, fetch = self.preprocess(request.json["feed"],
                                          request.json["fetch"])
            if isinstance(feed, dict) and "fetch" in feed:
                del feed["fetch"]
            if len(feed) == 0:
                raise ValueError("empty input")
            fetch_map = self.client.predict(feed=feed, fetch=fetch)
            result = self.postprocess(
                feed=request.json["feed"], fetch=fetch, fetch_map=fetch_map)
            result = {"result": result}
        except ValueError as err:
            result = {"result": err}
        return result

    def run_rpc_service(self):
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        server_pros = []
        for i, service in enumerate(self.rpc_service_list):
            p = Process(target=self._launch_rpc_service, args=(i, ))
            server_pros.append(p)
        for p in server_pros:
            p.start()

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_web_service()

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    # TODO: maybe change another API name: maybe run_local_predictor?
    def run_debugger_service(self, gpu=False):
        import socket
        localIP = socket.gethostbyname(socket.gethostname())
        print("web service address:")
        print("http://{}:{}/{}/prediction".format(localIP, self.port,
                                                  self.name))
        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
            self._launch_local_predictor(gpu)

        service_name = "/" + self.name + "/prediction"

        @app_instance.route(service_name, methods=["POST"])
        def run():
            return self.get_prediction(request)

        self.app_instance = app_instance

    def _launch_local_predictor(self, gpu):
        from paddle_serving_app.local_predict import Debugger
        self.client = Debugger()
        self.client.load_model_config(
            "{}".format(self.model_config), gpu=gpu, profile=False)

    def run_web_service(self):
        self.app_instance.run(host="0.0.0.0",
                              port=self.port,
                              threaded=False,
                              processes=4)

    def get_app_instance(self):
        return self.app_instance

    def preprocess(self, feed=[], fetch=[]):
        return feed, fetch

    def postprocess(self, feed=[], fetch=[], fetch_map=None):
        for key in fetch_map.iterkeys():
            fetch_map[key] = fetch_map[key].tolist()
        return fetch_map