operator.py 80.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
49

50
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
51 52
_op_name_gen = NameGenerator("Op")

53 54 55 56 57 58 59 60 61 62 63 64 65 66
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
67 68
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
69 70
}

D
dongdaxiang 已提交
71 72 73

class Op(object):
    def __init__(self,
B
barrierye 已提交
74
                 name=None,
D
dongdaxiang 已提交
75
                 input_ops=[],
B
barriery 已提交
76 77
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
78
                 client_config=None,
W
wangjiawei04 已提交
79
                 client_type=None,
B
barriery 已提交
80 81
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
82
                 retry=0,
B
barriery 已提交
83
                 batch_size=None,
84
                 auto_batching_timeout=None,
85 86
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
87
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
88
        if name is None:
B
barrierye 已提交
89
            name = _op_name_gen.next()
90
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
91
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
92
        self.set_input_ops(input_ops)
93
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
94

W
wangjiawei04 已提交
95
        self._local_service_handler = local_service_handler
B
barriery 已提交
96
        self._server_endpoints = server_endpoints
B
barrierye 已提交
97
        self._fetch_names = fetch_list
B
barriery 已提交
98
        self._client_config = client_config
W
wangjiawei04 已提交
99
        self.client_type = client_type
B
barriery 已提交
100
        self._timeout = timeout
101
        self._retry = max(1, retry)
B
barriery 已提交
102 103 104
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

105 106
        self._input = None
        self._outputs = []
B
barrierye 已提交
107

B
barriery 已提交
108 109 110
        self._server_use_profile = False
        self._tracer = None

111 112 113
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
114 115 116 117 118 119
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False

120 121 122 123 124 125 126 127 128 129 130 131 132
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
133
    def init_from_dict(self, conf):
134 135 136 137 138 139 140 141 142 143 144
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
165
            _LOGGER.debug(
B
barriery 已提交
166 167 168 169 170 171 172
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

173 174 175
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
176
        self.device_type = -1
177 178 179
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
180
        self.precision = "fp32"
T
TeslaZhao 已提交
181 182 183 184 185
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None

B
barriery 已提交
186 187 188 189 190 191
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
192
                self.client_type = conf["client_type"]
193
            else:
W
wangjiawei04 已提交
194
                if self._local_service_handler is None:
B
barriery 已提交
195
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
196 197
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
198
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
199
                    self.client_type = local_service_conf.get("client_type")
200 201
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
202
                    self.device_type = local_service_conf.get("device_type")
203 204 205 206
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
207
                    self.precision = local_service_conf.get("precision")
T
TeslaZhao 已提交
208 209 210 211 212 213 214 215
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")

216
                    if self.model_config is None:
B
barriery 已提交
217 218 219 220
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
221 222
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
223
                                model_config=self.model_config,
W
wangjiawei04 已提交
224
                                client_type=self.client_type,
225 226
                                workdir=self.workdir,
                                thread_num=self.thread_num,
227
                                device_type=self.device_type,
228 229
                                devices=self.devices,
                                mem_optim=self.mem_optim,
230
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
231 232 233 234 235 236
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list)
W
wangjiawei04 已提交
237 238 239 240 241 242 243 244 245 246 247 248
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
249
                            service_handler = local_service_handler.LocalServiceHandler(
250
                                model_config=self.model_config,
W
wangjiawei04 已提交
251
                                client_type=self.client_type,
252 253
                                workdir=self.workdir,
                                thread_num=self.thread_num,
254
                                device_type=self.device_type,
255
                                devices=self.devices,
256 257
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
258
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
259 260 261 262 263 264
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list)
W
wangjiawei04 已提交
265 266 267 268
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
269
                else:
B
barriery 已提交
270
                    self.with_serving = True
W
wangjiawei04 已提交
271
                    self._local_service_handler.prepare_server(
B
barriery 已提交
272
                    )  # get fetch_list
W
wangjiawei04 已提交
273
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
274 275 276
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
277
                    if self._client_config is None:
W
wangjiawei04 已提交
278
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
279
                        )
B
barriery 已提交
280
                    if self._fetch_names is None:
W
wangjiawei04 已提交
281
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
282
                        )
B
barriery 已提交
283 284
        else:
            self.with_serving = True
B
barriery 已提交
285

286 287 288 289 290 291 292 293 294 295 296
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
297
                              ", ".join([op.name for op in self._input_ops
298 299 300 301
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
302

303
    def launch_local_rpc_service(self):
304 305 306 307 308 309 310 311 312
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
313
        if self._local_service_handler is None:
B
barriery 已提交
314 315
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
316
                          " service: local_service_handler is None."))
B
barriery 已提交
317
            return
W
wangjiawei04 已提交
318
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
319 320 321
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
322
        self._local_service_handler.start_server()
B
barriery 已提交
323
        _LOGGER.info("Op({}) use local rpc service at port: {}"
324 325
                     .format(self.name, port))

B
barriery 已提交
326
    def use_default_auto_batching_config(self):
327 328 329 330 331 332 333 334 335
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
336
        if self._batch_size != 1:
337 338
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
339 340
            self._batch_size = 1
        if self._auto_batching_timeout != None:
341
            _LOGGER.warning(
B
barriery 已提交
342 343
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
344
            self._auto_batching_timeout = None
B
barriery 已提交
345

B
barrierye 已提交
346
    def use_profiler(self, use_profile):
B
barrierye 已提交
347
        self._server_use_profile = use_profile
348

B
barriery 已提交
349 350 351
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
352
    def init_client(self, client_config, server_endpoints):
353 354 355 356 357 358 359 360 361 362 363 364
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
365
        if self.with_serving == False:
B
barriery 已提交
366
            _LOGGER.info("Op({}) has no client (and it also do not "
367
                         "run the process function)".format(self.name))
B
barrierye 已提交
368
            return None
W
wangjiawei04 已提交
369
        if self.client_type == 'brpc':
B
barrierye 已提交
370 371
            client = Client()
            client.load_client_config(client_config)
372
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
373 374
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
375 376 377 378
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
379
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
380
        else:
B
barriery 已提交
381
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
382
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
383 384 385
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
386 387
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
388
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
389
        return client
390 391 392 393 394

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
395 396 397 398 399 400 401 402 403 404
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
405 406 407 408 409
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
410
                _LOGGER.critical(
B
barriery 已提交
411 412
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
413
                os._exit(-1)
414
            self._input_ops.append(op)
D
dongdaxiang 已提交
415

416 417 418
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

492
    def add_input_channel(self, channel):
493 494 495 496
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
497
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
498
            _LOGGER.critical(
B
barriery 已提交
499 500 501
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
502
            os._exit(-1)
503 504
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
505

506
    def clean_input_channel(self):
B
barrierye 已提交
507 508 509 510
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
511

512
    def add_output_channel(self, channel):
513 514 515 516 517 518 519 520 521 522
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
523
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
524
            _LOGGER.critical(
B
barriery 已提交
525 526
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
527
            os._exit(-1)
528 529
        channel.add_producer(self.name)
        self._outputs.append(channel)
530
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
531

532
    def clean_output_channels(self):
B
barrierye 已提交
533 534 535 536 537
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

538
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
539 540 541 542 543 544
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
545
            data_id: inner unique id, increase auto
546
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
547 548

        Return:
T
TeslaZhao 已提交
549
            output_data: data for process stage
T
TeslaZhao 已提交
550 551 552 553 554
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
555
        # multiple previous Op
B
barrierye 已提交
556
        if len(input_dicts) != 1:
557 558
            _LOGGER.critical(
                self._log(
B
barriery 已提交
559 560
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
561
            os._exit(-1)
D
dongdaxiang 已提交
562

B
barrierye 已提交
563
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
564
        return input_dict, False, None, ""
565
    
566
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
567 568 569 570 571
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
572 573
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
574 575 576 577

        Returns:
            call_result: predict result
        """
578 579 580 581

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
582 583 584 585 586 587 588 589 590 591 592 593 594
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
595
        if self.client_type == "local_predictor":
596 597 598 599 600 601 602 603
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
604 605
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
606
                fetch=self._fetch_names,
W
wangjiawei04 已提交
607 608
                batch=True,
                log_id=typical_logid)
609 610 611 612 613 614 615 616

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
617
            call_result = self.client.predict(
618
                feed=feed_batch[0],
W
wangjiawei04 已提交
619
                fetch=self._fetch_names,
W
wangjiawei04 已提交
620 621
                batch=True,
                log_id=typical_logid)
622 623 624 625 626 627 628 629 630 631 632 633 634 635

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
636
                pack_tensor_format=self._pack_tensor_format,
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
657

658
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
659 660 661
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
662 663
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
664
            data_id: inner unique id, increase auto
665
            log_id: logid, 0 default
T
TeslaZhao 已提交
666 667

        Returns: 
T
TeslaZhao 已提交
668
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
669 670 671 672
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
673 674 675
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
676
        return fetch_dict, None, ""
D
dongdaxiang 已提交
677

B
barrierye 已提交
678
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
692
        data_id, error_channeldata = None, None
B
barrierye 已提交
693
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
694 695 696 697
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
698
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
699
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
700 701

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
702
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
703 704 705
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
706
            if client_need_profile:
B
barrierye 已提交
707
                profile_set |= data.profile_data_set
B
barrierye 已提交
708
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
709
                profile_set, log_id)
B
barrierye 已提交
710 711 712 713 714

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
715
                                 profile_str=None,
B
barrierye 已提交
716
                                 client_need_profile=False,
B
barrierye 已提交
717
                                 profile_set=None):
T
TeslaZhao 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
732 733
        if name is None:
            name = self.name
B
barrierye 已提交
734

B
barriery 已提交
735
        # add profile into channeldata
B
barrierye 已提交
736
        if client_need_profile and profile_set is not None:
B
barriery 已提交
737 738
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
739
            data.add_profile(profile_set)
B
barrierye 已提交
740

B
barriery 已提交
741 742 743
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
744
    def start_with_process(self):
745 746 747 748 749 750 751 752 753 754
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
755 756 757
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
758
        process = []
B
barrierye 已提交
759
        for concurrency_idx in range(self.concurrency):
760 761
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
762
                args=(concurrency_idx, self._get_input_channel(),
763 764
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
765
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
766 767
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
768 769
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
                      self.get_output_channels_of_jump_ops()))
B
barriery 已提交
770
            p.daemon = True
771
            p.start()
W
wangjiawei04 已提交
772 773
            process.append(p)
        return process
774

W
wangjiawei04 已提交
775
    def start_with_thread(self):
776 777 778 779 780 781 782 783 784 785
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
786 787 788
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
789 790 791 792

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
793
            self.local_predictor = self._local_service_handler.get_client(0)
794

795
        threads = []
B
barrierye 已提交
796
        for concurrency_idx in range(self.concurrency):
797 798
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
799
                args=(concurrency_idx, self._get_input_channel(),
800 801
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
802
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
803 804
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
805 806
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
                      self.get_output_channels_of_jump_ops()))
B
barriery 已提交
807 808 809
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
810 811 812 813
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
814
    def init_op(self):
B
barrierye 已提交
815 816
        pass

T
TeslaZhao 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
831
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
832 833
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
834
        skip_process_dict = {}
835 836 837 838 839 840
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
841 842
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
843 844 845
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
846 847
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
848
            if resp.err_no == CustomExceptionCode.OK.value:
849
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
850 851
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
852 853 854 855 856 857 858 859 860 861 862
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
863
                error_channeldata = ChannelData(
864 865 866 867 868
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
869

870 871 872 873
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
874
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
891
        _LOGGER.debug("{} Running process".format(op_info_prefix))
892 893
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
894
        is_skip_process = False
T
TeslaZhao 已提交
895
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
896 897

        # skip process stage
T
TeslaZhao 已提交
898 899
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
935 936
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
982

T
TeslaZhao 已提交
983 984
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
985
        error_info = ""
T
TeslaZhao 已提交
986 987 988 989
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
990 991
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
992 993 994
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
995 996 997 998
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1011
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1012 1013 1014
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1015
                    else:
T
TeslaZhao 已提交
1016 1017
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1018
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1030
                    else:
T
TeslaZhao 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1047 1048 1049
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1050 1051 1052
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1053
                    error_code=error_code,
T
TeslaZhao 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1098
        else:
T
TeslaZhao 已提交
1099 1100 1101 1102 1103
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1104 1105
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1106
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1121
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1122 1123
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1124 1125 1126 1127 1128
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1129
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1130 1131
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1132
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1133
            log_id = logid_dict.get(data_id)
1134
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1135 1136
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1137 1138
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1139
            if resp.err_no == CustomExceptionCode.OK.value:
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1151
                err_channeldata = ChannelData(
1152 1153
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1154 1155 1156
                    data_id=data_id,
                    log_id=log_id)

1157 1158 1159 1160
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1176
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1177
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1178 1179

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1180
                                 timeout, op_info_prefix):
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1206
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1207 1208 1209
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1210 1211
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1212
                                break
B
barriery 已提交
1213 1214
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1215 1216 1217
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1218
                        _LOGGER.debug(
1219 1220
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1221
                    except ChannelTimeoutError:
B
barriery 已提交
1222 1223
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1224
                        break
B
barriery 已提交
1225 1226
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1227
            yield batch
1228

1229
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1242
        parsed_data_dict = collections.OrderedDict()
1243 1244
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1245
        logid_dict = {}
B
bug fix  
barriery 已提交
1246
        for channeldata_dict in batch:
1247
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1248
                    client_need_profile, profile_set, log_id) = \
1249 1250 1251 1252 1253
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1254
                logid_dict[data_id] = log_id
1255 1256 1257
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1258 1259
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1260

T
TeslaZhao 已提交
1261
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1262

W
wangjiawei04 已提交
1263
    def _run(self, concurrency_idx, input_channel, output_channels,
1264
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
T
TeslaZhao 已提交
1265
             device_type, devices, mem_optim, ir_optim, precision, use_mkldnn,
1266 1267
             mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
             is_jump_op, output_channels_of_jump_ops):
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1285
            device_type: support multiple devices
1286 1287
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1288
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1289 1290 1291 1292 1293
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1294 1295
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1296 1297 1298 1299

        Returns:
            None
        """
1300
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1301

1302
        # init ops
B
barriery 已提交
1303
        profiler = None
B
barrierye 已提交
1304
        try:
1305 1306 1307 1308 1309 1310
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1311
                    device_type=device_type,
1312 1313
                    devices=devices,
                    mem_optim=mem_optim,
1314
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1315 1316 1317 1318 1319
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list)
1320 1321 1322

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1323 1324
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1325
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1326
            profiler = self._initialize(is_thread_op, concurrency_idx)
1327

B
barrierye 已提交
1328
        except Exception as e:
B
barriery 已提交
1329
            _LOGGER.critical(
T
TeslaZhao 已提交
1330
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1331
                exc_info=True)
B
barrierye 已提交
1332
            os._exit(-1)
B
barriery 已提交
1333
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1334

B
barriery 已提交
1335
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1336 1337 1338 1339
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1340
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1341

B
barriery 已提交
1342
        start, end = None, None
B
barrierye 已提交
1343
        trace_que = collections.deque()
B
barrierye 已提交
1344
        while True:
B
barriery 已提交
1345
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1346
            try:
B
barriery 已提交
1347
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1348
            except ChannelStopError:
B
barriery 已提交
1349
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1350
                self._finalize(is_thread_op)
B
barrierye 已提交
1351
                break
B
barriery 已提交
1352
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1353
            in_time = end - start
1354 1355
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1356

B
barriery 已提交
1357 1358
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1359
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1360 1361
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1362
            except ChannelStopError:
B
barriery 已提交
1363
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1364
                self._finalize(is_thread_op)
B
barriery 已提交
1365
                break
1366 1367 1368
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1369 1370
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1371

1372 1373 1374 1375 1376 1377
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1378
            # preprecess
B
barriery 已提交
1379
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1380 1381
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1382
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1383
            prep_time = end - start
1384 1385
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1386
            try:
T
TeslaZhao 已提交
1387
                # put error requests into output channel, skip process and postprocess stage
1388
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1389
                    self._push_to_output_channels(
B
barriery 已提交
1390 1391
                        data=err_channeldata,
                        channels=output_channels,
1392 1393 1394
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1395
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1396 1397
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1398
            if len(preped_data_dict) == 0:
1399 1400
                continue

B
barrierye 已提交
1401
            # process
B
barriery 已提交
1402
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1403
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1404
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1405
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1406
            midp_time = end - start
1407 1408
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1409 1410
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1411
                    self._push_to_output_channels(
B
barriery 已提交
1412 1413
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1414 1415
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1416
            except ChannelStopError:
B
barriery 已提交
1417
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1418 1419 1420
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1421
                continue
1422 1423

            # postprocess
B
barriery 已提交
1424
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1425
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1426
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1427
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1428
            postp_time = end - start
1429
            after_postp_time = _time()
1430 1431
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1432 1433
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1434
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1435
                        data=err_channeldata,
B
barriery 已提交
1436
                        channels=output_channels,
B
barriery 已提交
1437 1438
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1439
            except ChannelStopError:
B
barriery 已提交
1440
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1441 1442 1443
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1444
                continue
1445

1446
            # push data to channel (if run succ)
B
barriery 已提交
1447
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1448
            try:
B
barriery 已提交
1449
                profile_str = profiler.gen_profile_str()
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1485
            except ChannelStopError:
B
barriery 已提交
1486
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1487
                self._finalize(is_thread_op)
B
barrierye 已提交
1488
                break
B
barriery 已提交
1489
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1490
            out_time = end - start
1491
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1492
            if trace_buffer is not None:
B
barrierye 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1510

W
wangjiawei04 已提交
1511
    def _initialize(self, is_thread_op, concurrency_idx):
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1525 1526 1527 1528 1529 1530 1531 1532 1533
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1534
                                                   self._server_endpoints)
1535 1536 1537 1538 1539 1540 1541 1542
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1543
                                           self._server_endpoints)
1544 1545 1546 1547
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1548
        print("[OP Object] init success")
B
barriery 已提交
1549 1550 1551 1552 1553
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1554 1555 1556 1557 1558 1559 1560 1561
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1562 1563 1564 1565 1566

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1567
class RequestOp(Op):
1568 1569 1570 1571 1572 1573
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1574

B
barrierye 已提交
1575
    def __init__(self):
1576 1577 1578
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1579 1580
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1581
        # init op
1582
        try:
1583
            self.init_op()
1584
        except Exception as e:
B
barriery 已提交
1585
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1586
            os._exit(-1)
B
barrierye 已提交
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1601
                BYTES
1602
        Unsupported type:
1603
                STRING
1604 1605 1606 1607 1608 1609 1610
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1611 1612
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1613 1614 1615 1616 1617 1618
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1619
        # Set dim shape
1620 1621 1622 1623 1624 1625 1626
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1627 1628 1629 1630 1631
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1666 1667 1668 1669
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1670 1671 1672 1673 1674 1675 1676
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1677
        return np_data, np_lod
1678

B
barrierye 已提交
1679
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1698

1699
        # unpack key/value string list
1700
        for idx, key in enumerate(request.key):
1701
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1702
        log_id = request.logid
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1734 1735 1736 1737
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1738

1739 1740 1741 1742
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1743 1744

        return dict_data, log_id, None, ""
B
barrierye 已提交
1745 1746 1747


class ResponseOp(Op):
1748 1749 1750 1751 1752 1753
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1754

B
barrierye 已提交
1755
    def __init__(self, input_ops):
1756 1757 1758
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1759 1760
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1761

B
barrierye 已提交
1762
        # init op
1763
        try:
1764
            self.init_op()
1765
        except Exception as e:
B
barriery 已提交
1766 1767
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1768
            os._exit(-1)
B
barrierye 已提交
1769

1770 1771 1772 1773 1774 1775
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1776
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1777
        """
1778 1779 1780 1781 1782 1783 1784 1785
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1786
        """
B
barrierye 已提交
1787
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1788 1789 1790
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1791
            # Framework level errors
B
barrierye 已提交
1792 1793 1794 1795
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1796
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1797
                for name, var in feed.items():
1798 1799
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1800 1801 1802 1803
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1804 1805
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1806 1807
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1808 1809
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1810
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1811
                        break
1812 1813
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1814
            else:
T
TeslaZhao 已提交
1815 1816 1817
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1818
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1819
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1820
        else:
1821
            # Product level errors
T
TeslaZhao 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1834
        return resp
1835 1836 1837


class VirtualOp(Op):
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1855 1856 1857

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1858
            name=name, input_ops=None, concurrency=concurrency)
1859 1860 1861
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1862 1863 1864 1865 1866 1867 1868 1869 1870
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1871 1872
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1873
    def _actual_pred_op_names(self, op):
1874 1875 1876 1877 1878 1879 1880 1881 1882
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1883
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1884 1885 1886 1887 1888 1889 1890
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1891
    def add_output_channel(self, channel):
1892 1893 1894 1895 1896 1897 1898 1899 1900
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1901
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1902
            _LOGGER.critical(
B
barriery 已提交
1903 1904 1905
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1906
            os._exit(-1)
1907
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1908 1909
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1910
        self._outputs.append(channel)
D
dongdaxiang 已提交
1911

1912
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1913
             is_thread_op):
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1928
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1929 1930 1931
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1932 1933 1934 1935 1936 1937 1938
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1939 1940
        while True:
            try:
1941
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1942
            except ChannelStopError:
B
barriery 已提交
1943
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1944
                self._finalize(is_thread_op)
B
barrierye 已提交
1945
                break
D
dongdaxiang 已提交
1946

B
barrierye 已提交
1947
            try:
1948 1949 1950 1951
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1952
            except ChannelStopError:
B
barriery 已提交
1953
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1954
                self._finalize(is_thread_op)
B
barrierye 已提交
1955
                break