general_response_op.cpp 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
19 20
#include "core/general-server/op/general_infer_helper.h"
#include "core/general-server/op/general_response_op.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

39 40 41
int GeneralResponseOp::inference() {
  const GeneralBlob *input_blob =
      get_depend_argument<GeneralBlob>(pre_name());
G
guru4elephant 已提交
42

43 44 45
  if (!input_blob) {
    LOG(ERROR) << "Failed mutable depended argument, op: "
               << pre_name();
46 47 48
    return -1;
  }

49 50 51
  const TensorVector *in = &input_blob->tensor_vector;
  int batch_size = in->GetBatchSize();
  double infer_time = in->infer_time;
52

53
  VLOG(2) << "input batch size: " << batch_size;
54 55 56 57 58 59

  const Request *req = dynamic_cast<const Request *>(get_request_message());

  VLOG(2) << "start to call load general model_conf op";
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
60
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  VLOG(2) << "get resource pointer done.";
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

  std::vector<int> fetch_index;
  fetch_index.resize(req->fetch_var_names_size());
  for (int i = 0; i < req->fetch_var_names_size(); ++i) {
    fetch_index[i] =
        model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
  }
  
  // response inst with only fetch_var_names
  Response *res = mutable_data<Response>();

  res->set_mean_infer_us(infer_time);

  for (int i = 0; i < batch_size; ++i) {
    FetchInst *fetch_inst = res->add_insts();
    for (auto & idx : fetch_index) {
      Tensor *tensor = fetch_inst->add_tensor_array();
      // currently only response float tensor or lod_tensor
      tensor->set_elem_type(1);
      if (model_config->_is_lod_fetch[idx]) {
        VLOG(2) << "out[" << idx << " is lod_tensor";
        tensor->add_shape(-1);
      } else {
        VLOG(2) << "out[" << idx << "] is tensor";
88
        for (int k = 1; k < in->at(idx).shape.size(); ++k) {
89
          VLOG(2) << "shape[" << k - 1 << "]: "
90 91
                  << in->at(idx).shape[k];
          tensor->add_shape(in->at(idx).shape[k]);
92 93 94 95 96 97 98
        }
      }
    }
  }

  int var_idx = 0;
  for (auto & idx : fetch_index) {
99
    float *data_ptr = static_cast<float *>(in->at(idx).data.data());
100
    int cap = 1;
101 102
    for (int j = 1; j < in->at(idx).shape.size(); ++j) {
      cap *= in->at(idx).shape[j];
103 104 105
    }
    if (model_config->_is_lod_fetch[idx]) {
      for (int j = 0; j < batch_size; ++j) {
106 107 108 109
        for (int k = in->at(idx).lod[0][j];
             k < in->at(idx).lod[0][j + 1]; k++) {
          res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_data(
              reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
110 111 112 113 114
        }
      }
    } else {
      for (int j = 0; j < batch_size; ++j) {
        for (int k = j * cap; k < (j + 1) * cap; ++k) {
115 116
          res->mutable_insts(j)->mutable_tensor_array(var_idx)->add_data(
              reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
117 118 119 120 121 122 123
        }
      }
    }
    var_idx++;
  }
  return 0;
}
124 125

DEFINE_OP(GeneralResponseOp);
126 127 128 129

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu