README.md 12.1 KB
Newer Older
M
MRXLT 已提交
1 2
([简体中文](./README_CN.md)|English)

D
Dong Daxiang 已提交
3 4
<p align="center">
    <br>
D
Dong Daxiang 已提交
5
<img src='doc/serving_logo.png' width = "600" height = "130">
D
Dong Daxiang 已提交
6 7
    <br>
<p>
8

M
MRXLT 已提交
9

B
barrierye 已提交
10

D
Dong Daxiang 已提交
11 12
<p align="center">
    <br>
B
barrierye 已提交
13 14 15
    <a href="https://travis-ci.com/PaddlePaddle/Serving">
        <img alt="Build Status" src="https://img.shields.io/travis/com/PaddlePaddle/Serving/develop">
    </a>
D
Dong Daxiang 已提交
16 17 18 19
    <img alt="Release" src="https://img.shields.io/badge/Release-0.0.3-yellowgreen">
    <img alt="Issues" src="https://img.shields.io/github/issues/PaddlePaddle/Serving">
    <img alt="License" src="https://img.shields.io/github/license/PaddlePaddle/Serving">
    <img alt="Slack" src="https://img.shields.io/badge/Join-Slack-green">
D
Dong Daxiang 已提交
20 21
    <br>
<p>
D
Dong Daxiang 已提交
22

W
wangjiawei04 已提交
23
- [Motivation](./README.md#motivation)
W
wangjiawei04 已提交
24
- [AIStudio Tutorial](./README.md#aistuio-tutorial)
W
wangjiawei04 已提交
25 26 27 28
- [Installation](./README.md#installation)
- [Quick Start Example](./README.md#quick-start-example)
- [Document](README.md#document)
- [Community](README.md#community)
W
wangjiawei04 已提交
29

D
Dong Daxiang 已提交
30
<h2 align="center">Motivation</h2>
D
Dong Daxiang 已提交
31

J
Jiawei Wang 已提交
32
We consider deploying deep learning inference service online to be a user-facing application in the future. **The goal of this project**: When you have trained a deep neural net with [Paddle](https://github.com/PaddlePaddle/Paddle), you are also capable to deploy the model online easily. A demo of Paddle Serving is as follows:
W
wangjiawei04 已提交
33

W
wangjiawei04 已提交
34 35 36 37 38 39 40
<h3 align="center">Some Key Features of Paddle Serving</h3>

- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed **with one line command**.
- **Industrial serving features** supported, such as models management, online loading, online A/B testing etc.
- **Highly concurrent and efficient communication** between clients and servers supported.
- **Multiple programming languages** supported on client side, such as C++, python and Java.

J
Jiawei Wang 已提交
41 42
***

T
TeslaZhao 已提交
43
- Any model trained by [PaddlePaddle](https://github.com/paddlepaddle/paddle) can be directly used or [Model Conversion Interface](./doc/SAVE.md) for online deployment of Paddle Serving.
W
wangjiawei04 已提交
44
- Support [Multi-model Pipeline Deployment](./doc/PIPELINE_SERVING.md), and provide the requirements of the REST interface and RPC interface itself, [Pipeline example](./python/examples/pipeline).
T
TeslaZhao 已提交
45
- Support the model zoos from the Paddle ecosystem, such as [PaddleDetection](./python/examples/detection), [PaddleOCR](./python/examples/ocr), [PaddleRec](https://github.com/PaddlePaddle/PaddleRec/tree/master/recserving/movie_recommender).
W
wangjiawei04 已提交
46 47 48
- Provide a variety of pre-processing and post-processing to facilitate users in training, deployment and other stages of related code, bridging the gap between AI developers and application developers, please refer to
[Serving Examples](./python/examples/).

D
Dong Daxiang 已提交
49
<p align="center">
D
Dong Daxiang 已提交
50
    <img src="doc/demo.gif" width="700">
D
Dong Daxiang 已提交
51
</p>
D
Dong Daxiang 已提交
52 53


W
wangjiawei04 已提交
54
<h2 align="center">AIStudio Turorial</h2>
W
wangjiawei04 已提交
55

W
wangjiawei04 已提交
56
Here we provide tutorial on AIStudio(Chinese Version) [AIStudio教程-Paddle Serving服务化部署框架](https://www.paddlepaddle.org.cn/tutorials/projectdetail/1555945)
W
wangjiawei04 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

The tutorial provides 
<ul>
<li>Paddle Serving Environment Setup</li>
  <ul>
    <li>Running in docker images
    <li>pip install Paddle Serving
  </ul>
<li>Quick Experience of Paddle Serving</li>
<li>Advanced Tutorial of Model Deployment</li>
  <ul>
    <li>Save/Convert Models for Paddle Serving</li>
    <li>Setup Online Inference Service</li>
  </ul>
<li>Paddle Serving Examples</li>
  <ul>
    <li>Paddle Serving for Detections</li>
    <li>Paddle Serving for OCR</li>
  </ul>
</ul>


D
Dong Daxiang 已提交
79
<h2 align="center">Installation</h2>
D
Dong Daxiang 已提交
80

W
wangjiawei04 已提交
81 82 83 84
We **highly recommend** you to **run Paddle Serving in Docker**, please visit [Run in Docker](doc/RUN_IN_DOCKER.md). See the [document](doc/DOCKER_IMAGES.md) for more docker images.

**Attention:**: Currently, the default GPU environment of paddlepaddle 2.0 is Cuda 10.2, so the sample code of GPU Docker is based on Cuda 10.2. We also provides docker images and whl packages for other GPU environments. If users use other environments, they need to carefully check and select the appropriate version.

M
MRXLT 已提交
85 86
```
# Run CPU Docker
W
wangjiawei04 已提交
87
docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-devel
J
Jiawei Wang 已提交
88
docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:0.5.0-devel bash
M
MRXLT 已提交
89
docker exec -it test bash
W
wangjiawei04 已提交
90
git clone https://github.com/PaddlePaddle/Serving
M
MRXLT 已提交
91 92 93
```
```
# Run GPU Docker
W
wangjiawei04 已提交
94
nvidia-docker pull registry.baidubce.com/paddlepaddle/serving:0.5.0-cuda10.2-cudnn8-devel
J
Jiawei Wang 已提交
95
nvidia-docker run -p 9292:9292 --name test -dit registry.baidubce.com/paddlepaddle/serving:0.5.0-cuda10.2-cudnn8-devel bash
M
MRXLT 已提交
96
nvidia-docker exec -it test bash
W
wangjiawei04 已提交
97
git clone https://github.com/PaddlePaddle/Serving
M
MRXLT 已提交
98
```
D
Dong Daxiang 已提交
99

D
Dong Daxiang 已提交
100
```shell
W
wangjiawei04 已提交
101 102
pip install paddle-serving-client==0.5.0
pip install paddle-serving-server==0.5.0 # CPU
W
wangjiawei04 已提交
103
pip install paddle-serving-app==0.3.0
W
wangjiawei04 已提交
104 105 106 107 108 109
pip install paddle-serving-server-gpu==0.5.0.post102 #GPU with CUDA10.2 + TensorRT7
# DO NOT RUN ALL COMMANDS! check your GPU env and select the right one
pip install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
pip install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
pip install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
pip install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
D
Dong Daxiang 已提交
110 111
```

M
MRXLT 已提交
112
You may need to use a domestic mirror source (in China, you can use the Tsinghua mirror source, add `-i https://pypi.tuna.tsinghua.edu.cn/simple` to pip command) to speed up the download.
B
barrierye 已提交
113

W
wangjiawei04 已提交
114
If you need install modules compiled with develop branch, please download packages from [latest packages list](./doc/LATEST_PACKAGES.md) and install with `pip install` command. If you want to compile by yourself, please refer to [How to compile Paddle Serving?](./doc/COMPILE.md)
M
MRXLT 已提交
115

W
wangjiawei04 已提交
116
Packages of paddle-serving-server and paddle-serving-server-gpu support Centos 6/7, Ubuntu 16/18, Windows 10.
117

W
wangjiawei04 已提交
118
Packages of paddle-serving-client and paddle-serving-app support Linux and Windows, but paddle-serving-client only support python2.7/3.5/3.6/3.7/3.8.
M
MRXLT 已提交
119

W
wangjiawei04 已提交
120
Recommended to install paddle >= 2.0.0
D
Dong Daxiang 已提交
121 122

```
W
wangjiawei04 已提交
123 124
# CPU users, please run
pip install paddlepaddle==2.0.0
D
Dong Daxiang 已提交
125

W
wangjiawei04 已提交
126
# GPU Cuda10.2 please run
W
wangjiawei04 已提交
127
pip install paddlepaddle-gpu==2.0.0 
D
Dong Daxiang 已提交
128 129
```

W
wangjiawei04 已提交
130
**Note**: If your Cuda version is not 10.2, please do not execute the above commands directly, you need to refer to [Paddle official documentation-multi-version whl package list
W
wangjiawei04 已提交
131
](https://www.paddlepaddle.org.cn/documentation/docs/en/install/Tables_en.html#multi-version-whl-package-list-release)
W
wangjiawei04 已提交
132 133 134 135 136 137

Select the url link of the corresponding GPU environment and install it. For example, for Python2.7 users of Cuda 9.0, please select `cp27-cp27mu` and
The url corresponding to `cuda9.0_cudnn7-mkl`, copy it and run
```
pip install https://paddle-wheel.bj.bcebos.com/2.0.0-gpu-cuda9-cudnn7-mkl/paddlepaddle_gpu-2.0.0.post90-cp27-cp27mu-linux_x86_64.whl
```
W
wangjiawei04 已提交
138

W
fix  
wangjiawei04 已提交
139
the default `paddlepaddle-gpu==2.0.0` is Cuda 10.2 with no TensorRT. If you want to install PaddlePaddle with TensorRT. please also check the documentation-multi-version whl package list and find key word `cuda10.2-cudnn8.0-trt7.1.3`. More info please check [Paddle Serving uses TensorRT](./doc/TENSOR_RT.md)
W
wangjiawei04 已提交
140

W
wangjiawei04 已提交
141 142
If it is other environment and Python version, please find the corresponding link in the table and install it with pip.

W
wangjiawei04 已提交
143

W
wangjiawei04 已提交
144
For **Windows Users**, please read the document [Paddle Serving for Windows Users](./doc/WINDOWS_TUTORIAL.md)
D
Dong Daxiang 已提交
145

D
Dong Daxiang 已提交
146
<h2 align="center">Quick Start Example</h2>
D
Dong Daxiang 已提交
147

W
wangjiawei04 已提交
148
This quick start example is mainly for those users who already have a model to deploy, and we also provide a model that can be used for deployment. in case if you want to know how to complete the process from offline training to online service, please refer to the AiStudio tutorial above.
D
Dong Daxiang 已提交
149

D
Dong Daxiang 已提交
150
### Boston House Price Prediction model
W
wangjiawei04 已提交
151 152

get into the Serving git directory, and change dir to `fit_a_line`
D
Dong Daxiang 已提交
153
``` shell
W
wangjiawei04 已提交
154 155
cd Serving/python/examples/fit_a_line
sh get_data.sh
D
Dong Daxiang 已提交
156
```
D
Dong Daxiang 已提交
157

D
Dong Daxiang 已提交
158 159
Paddle Serving provides HTTP and RPC based service for users to access

W
wangjiawei04 已提交
160
### RPC service
D
Dong Daxiang 已提交
161

W
wangjiawei04 已提交
162
A user can also start a RPC service with `paddle_serving_server.serve`. RPC service is usually faster than HTTP service, although a user needs to do some coding based on Paddle Serving's python client API. Note that we do not specify `--name` here. 
D
Dong Daxiang 已提交
163
``` shell
W
wangjiawei04 已提交
164
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
D
Dong Daxiang 已提交
165
```
D
Dong Daxiang 已提交
166 167
<center>

D
Dong Daxiang 已提交
168 169
| Argument | Type | Default | Description |
|--------------|------|-----------|--------------------------------|
D
Dong Daxiang 已提交
170
| `thread` | int | `4` | Concurrency of current service |
D
Dong Daxiang 已提交
171
| `port` | int | `9292` | Exposed port of current service to users|
D
Dong Daxiang 已提交
172
| `model` | str | `""` | Path of paddle model directory to be served |
M
MRXLT 已提交
173
| `mem_optim_off` | - | - | Disable memory / graphic memory optimization |
M
MRXLT 已提交
174 175
| `ir_optim` | - | - | Enable analysis and optimization of calculation graph |
| `use_mkl` (Only for cpu version) | - | - | Run inference with MKL |
M
bug fix  
MRXLT 已提交
176
| `use_trt` (Only for trt version) | - | - | Run inference with TensorRT  |
W
wangjiawei04 已提交
177 178
| `use_lite` (Only for ARM) | - | - | Run PaddleLite inference |
| `use_xpu` (Only for ARM+XPU) | - | - | Run PaddleLite XPU inference |
D
Dong Daxiang 已提交
179 180

</center>
W
fix doc  
wangjiawei04 已提交
181 182

```python
D
Dong Daxiang 已提交
183
# A user can visit rpc service through paddle_serving_client API
D
Dong Daxiang 已提交
184
from paddle_serving_client import Client
W
wangjiawei04 已提交
185
import numpy as np
D
Dong Daxiang 已提交
186
client = Client()
D
Dong Daxiang 已提交
187
client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
D
Dong Daxiang 已提交
188
client.connect(["127.0.0.1:9292"])
D
Dong Daxiang 已提交
189
data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
D
Dong Daxiang 已提交
190
        -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
W
wangjiawei04 已提交
191
fetch_map = client.predict(feed={"x": np.array(data).reshape(1,13,1)}, fetch=["price"])
D
Dong Daxiang 已提交
192
print(fetch_map)
D
Dong Daxiang 已提交
193
```
D
Dong Daxiang 已提交
194
Here, `client.predict` function has two arguments. `feed` is a `python dict` with model input variable alias name and values. `fetch` assigns the prediction variables to be returned from servers. In the example, the name of `"x"` and `"price"` are assigned when the servable model is saved during training.
D
Dong Daxiang 已提交
195

M
MRXLT 已提交
196

W
wangjiawei04 已提交
197 198 199 200
### WEB service

Users can also put the data format processing logic on the server side, so that they can directly use curl to access the service, refer to the following case whose path is `python/examples/fit_a_line`

W
wangjiawei04 已提交
201 202
```
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci
W
wangjiawei04 已提交
203 204 205 206 207 208 209 210 211 212
```
for client side,
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]}], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
```
the response is
```
{"result":{"price":[[18.901151657104492]]}}
```

D
Dong Daxiang 已提交
213
<h2 align="center">Document</h2>
D
Dong Daxiang 已提交
214

D
Dong Daxiang 已提交
215
### New to Paddle Serving
D
Dong Daxiang 已提交
216
- [How to save a servable model?](doc/SAVE.md)
J
Jiawei Wang 已提交
217
- [Write Bert-as-Service in 10 minutes](doc/BERT_10_MINS.md)
W
wangjiawei04 已提交
218
- [Paddle Serving Examples](python/examples)
W
wangjiawei04 已提交
219

D
Dong Daxiang 已提交
220
### Developers
B
barrierye 已提交
221
- [How to develop a new Web Service?](doc/NEW_WEB_SERVICE.md)
J
Jiawei Wang 已提交
222
- [Compile from source code](doc/COMPILE.md)
W
wangjiawei04 已提交
223
- [Develop Pipeline Serving](doc/PIPELINE_SERVING.md)
M
MRXLT 已提交
224 225
- [Deploy Web Service with uWSGI](doc/UWSGI_DEPLOY.md)
- [Hot loading for model file](doc/HOT_LOADING_IN_SERVING.md)
W
fix  
wangjiawei04 已提交
226
- [Paddle Serving uses TensorRT](doc/TENSOR_RT.md)
D
Dong Daxiang 已提交
227

D
Dong Daxiang 已提交
228
### About Efficiency
M
MRXLT 已提交
229
- [How to profile Paddle Serving latency?](python/examples/util)
M
MRXLT 已提交
230
- [How to optimize performance?](doc/PERFORMANCE_OPTIM.md)
M
MRXLT 已提交
231
- [Deploy multi-services on one GPU(Chinese)](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
J
Jiawei Wang 已提交
232 233
- [CPU Benchmarks(Chinese)](doc/BENCHMARKING.md)
- [GPU Benchmarks(Chinese)](doc/GPU_BENCHMARKING.md)
D
Dong Daxiang 已提交
234

D
Dong Daxiang 已提交
235
### Design
J
Jiawei Wang 已提交
236
- [Design Doc](doc/DESIGN_DOC.md)
D
Dong Daxiang 已提交
237

W
wangjiawei04 已提交
238 239
### FAQ
- [FAQ(Chinese)](doc/FAQ.md)
D
Dong Daxiang 已提交
240

W
wangjiawei04 已提交
241
<h2 align="center">Community</h2>
D
Dong Daxiang 已提交
242

D
Dong Daxiang 已提交
243
### Slack
D
Dong Daxiang 已提交
244

D
Dong Daxiang 已提交
245 246
To connect with other users and contributors, welcome to join our [Slack channel](https://paddleserving.slack.com/archives/CUBPKHKMJ)

D
Dong Daxiang 已提交
247
### Contribution
D
Dong Daxiang 已提交
248

D
Dong Daxiang 已提交
249
If you want to contribute code to Paddle Serving, please reference [Contribution Guidelines](doc/CONTRIBUTE.md)
D
Dong Daxiang 已提交
250

J
Jiawei Wang 已提交
251 252 253
- Special Thanks to [@BeyondYourself](https://github.com/BeyondYourself) in complementing the gRPC tutorial, updating the FAQ doc and modifying the mdkir command
- Special Thanks to [@mcl-stone](https://github.com/mcl-stone) in updating faster_rcnn benchmark
- Special Thanks to [@cg82616424](https://github.com/cg82616424) in updating the unet benchmark and modifying resize comment error
P
PaddlePM 已提交
254

D
Dong Daxiang 已提交
255
### Feedback
D
Dong Daxiang 已提交
256

D
Dong Daxiang 已提交
257 258
For any feedback or to report a bug, please propose a [GitHub Issue](https://github.com/PaddlePaddle/Serving/issues).

D
Dong Daxiang 已提交
259 260
### License

D
Dong Daxiang 已提交
261
[Apache 2.0 License](https://github.com/PaddlePaddle/Serving/blob/develop/LICENSE)