operator.py 80.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37 38 39
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_feed_dict=ParamVerify.check_feed_dict
check_fetch_list=ParamVerify.check_fetch_list
B
barrierye 已提交
40
from .proto import pipeline_service_pb2
41 42 43 44
from .channel import (ThreadChannel, ProcessChannel,ChannelData, 
                      ChannelDataType, ChannelStopError, ChannelTimeoutError)
from .error_catch import  ProductErrCode
from .error_catch import CustomExceptionCode as ChannelDataErrcode
B
barrierye 已提交
45
from .util import NameGenerator
B
barriery 已提交
46
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
47
from . import local_service_handler
48
from .pipeline_client import PipelineClient as PPClient
49

50
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
51 52
_op_name_gen = NameGenerator("Op")

53 54 55 56 57 58 59 60 61 62 63 64 65 66
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
67 68
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
69 70
}

D
dongdaxiang 已提交
71 72 73

class Op(object):
    def __init__(self,
B
barrierye 已提交
74
                 name=None,
D
dongdaxiang 已提交
75
                 input_ops=[],
B
barriery 已提交
76 77
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
78
                 client_config=None,
W
wangjiawei04 已提交
79
                 client_type=None,
B
barriery 已提交
80 81
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
82
                 retry=0,
B
barriery 已提交
83
                 batch_size=None,
84
                 auto_batching_timeout=None,
85 86
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
87
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
88
        if name is None:
B
barrierye 已提交
89
            name = _op_name_gen.next()
90
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
91
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
92
        self.set_input_ops(input_ops)
93
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
94

W
wangjiawei04 已提交
95
        self._local_service_handler = local_service_handler
B
barriery 已提交
96
        self._server_endpoints = server_endpoints
B
barrierye 已提交
97
        self._fetch_names = fetch_list
B
barriery 已提交
98
        self._client_config = client_config
W
wangjiawei04 已提交
99
        self.client_type = client_type
B
barriery 已提交
100
        self._timeout = timeout
101
        self._retry = max(1, retry)
B
barriery 已提交
102 103 104
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

105 106
        self._input = None
        self._outputs = []
B
barrierye 已提交
107

B
barriery 已提交
108 109 110
        self._server_use_profile = False
        self._tracer = None

111 112 113
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
114 115 116 117 118 119
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False

120 121 122 123 124 125 126 127 128 129 130 131 132
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
133
    def init_from_dict(self, conf):
134 135 136 137 138 139 140 141 142 143 144
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
165
            _LOGGER.debug(
B
barriery 已提交
166 167 168 169 170 171 172
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

173 174 175
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
176
        self.device_type = -1
177 178 179
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
180
        self.precision = "fp32"
T
TeslaZhao 已提交
181 182 183 184 185
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None

B
barriery 已提交
186 187 188 189 190 191
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
192
                self.client_type = conf["client_type"]
193
            else:
W
wangjiawei04 已提交
194
                if self._local_service_handler is None:
B
barriery 已提交
195
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
196 197
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
198
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
199
                    self.client_type = local_service_conf.get("client_type")
200 201
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
202
                    self.device_type = local_service_conf.get("device_type")
203 204 205 206
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
207
                    self.precision = local_service_conf.get("precision")
T
TeslaZhao 已提交
208 209 210 211 212 213 214 215
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")

216
                    if self.model_config is None:
B
barriery 已提交
217 218 219 220
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
221 222
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
223
                                model_config=self.model_config,
W
wangjiawei04 已提交
224
                                client_type=self.client_type,
225 226
                                workdir=self.workdir,
                                thread_num=self.thread_num,
227
                                device_type=self.device_type,
228 229
                                devices=self.devices,
                                mem_optim=self.mem_optim,
230
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
231 232 233 234 235 236
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list)
W
wangjiawei04 已提交
237 238 239 240 241 242 243 244 245 246 247 248
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
249
                            service_handler = local_service_handler.LocalServiceHandler(
250
                                model_config=self.model_config,
W
wangjiawei04 已提交
251
                                client_type=self.client_type,
252 253
                                workdir=self.workdir,
                                thread_num=self.thread_num,
254
                                device_type=self.device_type,
255
                                devices=self.devices,
256 257
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
258
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
259 260 261 262 263 264
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list)
W
wangjiawei04 已提交
265 266 267 268
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
269
                else:
B
barriery 已提交
270
                    self.with_serving = True
W
wangjiawei04 已提交
271
                    self._local_service_handler.prepare_server(
B
barriery 已提交
272
                    )  # get fetch_list
W
wangjiawei04 已提交
273
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
274 275 276
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
277
                    if self._client_config is None:
W
wangjiawei04 已提交
278
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
279
                        )
B
barriery 已提交
280
                    if self._fetch_names is None:
W
wangjiawei04 已提交
281
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
282
                        )
B
barriery 已提交
283 284
        else:
            self.with_serving = True
B
barriery 已提交
285

286 287 288 289 290 291 292 293 294 295 296
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
297
                              ", ".join([op.name for op in self._input_ops
298 299 300 301
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
302

303
    def launch_local_rpc_service(self):
304 305 306 307 308 309 310 311 312
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
313
        if self._local_service_handler is None:
B
barriery 已提交
314 315
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
316
                          " service: local_service_handler is None."))
B
barriery 已提交
317
            return
W
wangjiawei04 已提交
318
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
319 320 321
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
322
        self._local_service_handler.start_server()
B
barriery 已提交
323
        _LOGGER.info("Op({}) use local rpc service at port: {}"
324 325
                     .format(self.name, port))

B
barriery 已提交
326
    def use_default_auto_batching_config(self):
327 328 329 330 331 332 333 334 335
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
336
        if self._batch_size != 1:
337 338
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
339 340
            self._batch_size = 1
        if self._auto_batching_timeout != None:
341
            _LOGGER.warning(
B
barriery 已提交
342 343
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
344
            self._auto_batching_timeout = None
B
barriery 已提交
345

B
barrierye 已提交
346
    def use_profiler(self, use_profile):
B
barrierye 已提交
347
        self._server_use_profile = use_profile
348

B
barriery 已提交
349 350 351
    def set_tracer(self, tracer):
        self._tracer = tracer

B
bjjwwang 已提交
352 353 354
    def set_use_prometheus(self, use_prometheus):
        self._use_prometheus = use_prometheus

W
wangjiawei04 已提交
355
    def init_client(self, client_config, server_endpoints):
356 357 358 359 360 361 362 363 364 365 366 367
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
368
        if self.with_serving == False:
B
barriery 已提交
369
            _LOGGER.info("Op({}) has no client (and it also do not "
370
                         "run the process function)".format(self.name))
B
barrierye 已提交
371
            return None
W
wangjiawei04 已提交
372
        if self.client_type == 'brpc':
B
barrierye 已提交
373 374
            client = Client()
            client.load_client_config(client_config)
375
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
376 377
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
378 379 380 381
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
382
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
383
        else:
B
barriery 已提交
384
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
385
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
386 387 388
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
389 390
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
391
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
392
        return client
393 394 395 396 397

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
398 399 400 401 402 403 404 405 406 407
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
408 409 410 411 412
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
413
                _LOGGER.critical(
B
barriery 已提交
414 415
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
416
                os._exit(-1)
417
            self._input_ops.append(op)
D
dongdaxiang 已提交
418

419 420 421
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

495
    def add_input_channel(self, channel):
496 497 498 499
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
500
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
501
            _LOGGER.critical(
B
barriery 已提交
502 503 504
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
505
            os._exit(-1)
506 507
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
508

509
    def clean_input_channel(self):
B
barrierye 已提交
510 511 512 513
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
514

515
    def add_output_channel(self, channel):
516 517 518 519 520 521 522 523 524 525
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
526
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
527
            _LOGGER.critical(
B
barriery 已提交
528 529
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
530
            os._exit(-1)
531 532
        channel.add_producer(self.name)
        self._outputs.append(channel)
533
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
534

535
    def clean_output_channels(self):
B
barrierye 已提交
536 537 538 539 540
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

541
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
542 543 544 545 546 547
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
548
            data_id: inner unique id, increase auto
549
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
550 551

        Return:
T
TeslaZhao 已提交
552
            output_data: data for process stage
T
TeslaZhao 已提交
553 554 555 556 557
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
558
        # multiple previous Op
B
barrierye 已提交
559
        if len(input_dicts) != 1:
560 561
            _LOGGER.critical(
                self._log(
B
barriery 已提交
562 563
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
564
            os._exit(-1)
D
dongdaxiang 已提交
565

B
barrierye 已提交
566
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
567
        return input_dict, False, None, ""
568
    
569
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
570 571 572 573 574
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
575 576
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
577 578 579 580

        Returns:
            call_result: predict result
        """
581 582 583 584

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""
585 586 587 588 589 590 591 592 593 594 595 596 597
        @ErrorCatch 
        @ParamChecker
        def feed_fetch_list_check_helper(feed_batch : lambda feed_batch: check_feed_dict(feed_batch[0], self.right_feed_names),
                                         fetch_list : lambda fetch_list: check_fetch_list(fetch_list, self.right_fetch_names),
                                         log_id):
            return None
        _, resp = feed_fetch_list_check_helper(feed_batch, self._fetch_names, log_id=typical_logid)
        if resp.err_no != CustomExceptionCode.OK.value:
            err_code = resp.err_no
            err_info = resp.err_msg
            call_result = None
            return call_result, err_code, err_info
                
W
wangjiawei04 已提交
598
        if self.client_type == "local_predictor":
599 600 601 602 603 604 605 606
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
607 608
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
609
                fetch=self._fetch_names,
W
wangjiawei04 已提交
610 611
                batch=True,
                log_id=typical_logid)
612 613 614 615 616 617 618 619

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
620
            call_result = self.client.predict(
621
                feed=feed_batch[0],
W
wangjiawei04 已提交
622
                fetch=self._fetch_names,
W
wangjiawei04 已提交
623 624
                batch=True,
                log_id=typical_logid)
625 626 627 628 629 630 631 632 633 634 635 636 637 638

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
639
                pack_tensor_format=self._pack_tensor_format,
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
660

661
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
662 663 664
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
665 666
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
667
            data_id: inner unique id, increase auto
668
            log_id: logid, 0 default
T
TeslaZhao 已提交
669 670

        Returns: 
T
TeslaZhao 已提交
671
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
672 673 674 675
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
676 677 678
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
679
        return fetch_dict, None, ""
D
dongdaxiang 已提交
680

B
barrierye 已提交
681
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
695
        data_id, error_channeldata = None, None
B
barrierye 已提交
696
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
697 698 699 700
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
701
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
702
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
703 704

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
705
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
706 707 708
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
709
            if client_need_profile:
B
barrierye 已提交
710
                profile_set |= data.profile_data_set
B
barrierye 已提交
711
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
712
                profile_set, log_id)
B
barrierye 已提交
713 714 715 716 717

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
718
                                 profile_str=None,
B
barrierye 已提交
719
                                 client_need_profile=False,
B
barrierye 已提交
720
                                 profile_set=None):
T
TeslaZhao 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
735 736
        if name is None:
            name = self.name
B
barrierye 已提交
737

B
barriery 已提交
738
        # add profile into channeldata
B
barrierye 已提交
739
        if client_need_profile and profile_set is not None:
B
barriery 已提交
740 741
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
742
            data.add_profile(profile_set)
B
barrierye 已提交
743

B
barriery 已提交
744 745 746
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
747
    def start_with_process(self):
748 749 750 751 752 753 754 755 756 757
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
758 759 760
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
761
        process = []
B
barrierye 已提交
762
        for concurrency_idx in range(self.concurrency):
763 764
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
765
                args=(concurrency_idx, self._get_input_channel(),
766 767
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
768
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
769 770
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
771 772
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
                      self.get_output_channels_of_jump_ops()))
B
barriery 已提交
773
            p.daemon = True
774
            p.start()
W
wangjiawei04 已提交
775 776
            process.append(p)
        return process
777

W
wangjiawei04 已提交
778
    def start_with_thread(self):
779 780 781 782 783 784 785 786 787 788
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
789 790 791
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
792 793 794 795

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
796
            self.local_predictor = self._local_service_handler.get_client(0)
797

798
        threads = []
B
barrierye 已提交
799
        for concurrency_idx in range(self.concurrency):
800 801
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
802
                args=(concurrency_idx, self._get_input_channel(),
803 804
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
805
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
806 807
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
808 809
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
                      self.get_output_channels_of_jump_ops()))
B
barriery 已提交
810 811 812
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
813 814 815 816
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
817
    def init_op(self):
B
barrierye 已提交
818 819
        pass

T
TeslaZhao 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
834
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
835 836
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
837
        skip_process_dict = {}
838 839 840 841 842 843
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
844 845
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
846 847 848
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
F
felixhjh 已提交
849 850
            process_res, resp = preprocess_help(self, parsed_data, data_id = data_id,
            logid_dict = logid_dict)
F
felixhjh 已提交
851
            if resp.err_no == CustomExceptionCode.OK.value:
852
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
853 854
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
855 856 857 858 859 860 861 862 863 864 865
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
866
                error_channeldata = ChannelData(
867 868 869 870 871
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
872

873 874 875 876
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
877
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
894
        _LOGGER.debug("{} Running process".format(op_info_prefix))
895 896
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
897
        is_skip_process = False
T
TeslaZhao 已提交
898
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
899 900

        # skip process stage
T
TeslaZhao 已提交
901 902
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
938 939
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
985

T
TeslaZhao 已提交
986 987
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
988
        error_info = ""
T
TeslaZhao 已提交
989 990 991 992
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
993 994
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
995 996 997
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
998 999 1000 1001
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
1014
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
1015 1016 1017
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
1018
                    else:
T
TeslaZhao 已提交
1019 1020
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1021
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1033
                    else:
T
TeslaZhao 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1050 1051 1052
            error_info = "[{}] failed to predict. {}. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
             self.name, error_info)
    
T
TeslaZhao 已提交
1053 1054 1055
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
1056
                    error_code=error_code,
T
TeslaZhao 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1101
        else:
T
TeslaZhao 已提交
1102 1103 1104 1105 1106
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1107 1108
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1109
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1124
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1125 1126
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1127 1128 1129 1130 1131
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1132
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1133 1134
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1135
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1136
            log_id = logid_dict.get(data_id)
1137
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1138 1139
            prod_errcode, prod_errinfo = None, None

F
felixhjh 已提交
1140 1141
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id
            = data_id, logid_dict = logid_dict)
H
huangjianhui 已提交
1142
            if resp.err_no == CustomExceptionCode.OK.value:
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1154
                err_channeldata = ChannelData(
1155 1156
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1157 1158 1159
                    data_id=data_id,
                    log_id=log_id)

1160 1161 1162 1163
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1179
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1180
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1181 1182

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1183
                                 timeout, op_info_prefix):
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1209
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1210 1211 1212
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1213 1214
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1215
                                break
B
barriery 已提交
1216 1217
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1218 1219 1220
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1221
                        _LOGGER.debug(
1222 1223
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1224
                    except ChannelTimeoutError:
B
barriery 已提交
1225 1226
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1227
                        break
B
barriery 已提交
1228 1229
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1230
            yield batch
1231

1232
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1245
        parsed_data_dict = collections.OrderedDict()
1246 1247
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1248
        logid_dict = {}
B
bug fix  
barriery 已提交
1249
        for channeldata_dict in batch:
1250
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1251
                    client_need_profile, profile_set, log_id) = \
1252 1253 1254 1255 1256
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1257
                logid_dict[data_id] = log_id
1258 1259 1260
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1261 1262
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1263

T
TeslaZhao 已提交
1264
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1265

W
wangjiawei04 已提交
1266
    def _run(self, concurrency_idx, input_channel, output_channels,
1267
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
T
TeslaZhao 已提交
1268
             device_type, devices, mem_optim, ir_optim, precision, use_mkldnn,
1269 1270
             mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
             is_jump_op, output_channels_of_jump_ops):
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1288
            device_type: support multiple devices
1289 1290
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1291
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1292 1293 1294 1295 1296
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1297 1298
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1299 1300 1301 1302

        Returns:
            None
        """
1303
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1304

1305
        # init ops
B
barriery 已提交
1306
        profiler = None
B
barrierye 已提交
1307
        try:
1308 1309 1310 1311 1312 1313
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1314
                    device_type=device_type,
1315 1316
                    devices=devices,
                    mem_optim=mem_optim,
1317
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1318 1319 1320 1321 1322
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list)
1323 1324 1325

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1326 1327
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1328
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1329
            profiler = self._initialize(is_thread_op, concurrency_idx)
1330

B
barrierye 已提交
1331
        except Exception as e:
B
barriery 已提交
1332
            _LOGGER.critical(
T
TeslaZhao 已提交
1333
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1334
                exc_info=True)
B
barrierye 已提交
1335
            os._exit(-1)
B
barriery 已提交
1336
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1337

B
barriery 已提交
1338
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1339 1340 1341 1342
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1343
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1344

B
barriery 已提交
1345
        start, end = None, None
B
barrierye 已提交
1346
        trace_que = collections.deque()
B
barrierye 已提交
1347
        while True:
B
barriery 已提交
1348
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1349
            try:
B
barriery 已提交
1350
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1351
            except ChannelStopError:
B
barriery 已提交
1352
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1353
                self._finalize(is_thread_op)
B
barrierye 已提交
1354
                break
B
barriery 已提交
1355
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1356
            in_time = end - start
1357 1358
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1359

B
barriery 已提交
1360 1361
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1362
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1363 1364
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1365
            except ChannelStopError:
B
barriery 已提交
1366
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1367
                self._finalize(is_thread_op)
B
barriery 已提交
1368
                break
1369 1370 1371
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1372 1373
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1374

1375 1376 1377 1378 1379 1380
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1381
            # preprecess
B
barriery 已提交
1382
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1383 1384
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1385
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1386
            prep_time = end - start
1387 1388
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1389
            try:
T
TeslaZhao 已提交
1390
                # put error requests into output channel, skip process and postprocess stage
1391
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1392
                    self._push_to_output_channels(
B
barriery 已提交
1393 1394
                        data=err_channeldata,
                        channels=output_channels,
1395 1396 1397
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1398
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1399 1400
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1401
            if len(preped_data_dict) == 0:
1402 1403
                continue

B
barrierye 已提交
1404
            # process
B
barriery 已提交
1405
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1406
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1407
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1408
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
bjjwwang 已提交
1409
            _LOGGER.info("prometheus inf count +1")
B
barrierye 已提交
1410
            midp_time = end - start
1411 1412
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1413 1414
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1415
                    self._push_to_output_channels(
B
barriery 已提交
1416 1417
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1418 1419
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1420
            except ChannelStopError:
B
barriery 已提交
1421
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1422 1423 1424
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1425
                continue
1426 1427

            # postprocess
B
barriery 已提交
1428
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1429
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1430
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1431
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1432
            postp_time = end - start
1433
            after_postp_time = _time()
1434 1435
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1436 1437
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1438
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1439
                        data=err_channeldata,
B
barriery 已提交
1440
                        channels=output_channels,
B
barriery 已提交
1441 1442
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1443
            except ChannelStopError:
B
barriery 已提交
1444
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1445 1446 1447
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1448
                continue
1449

1450
            # push data to channel (if run succ)
B
barriery 已提交
1451
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1452
            try:
B
barriery 已提交
1453
                profile_str = profiler.gen_profile_str()
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1489
            except ChannelStopError:
B
barriery 已提交
1490
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1491
                self._finalize(is_thread_op)
B
barrierye 已提交
1492
                break
B
barriery 已提交
1493
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1494
            out_time = end - start
1495
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1496
            if trace_buffer is not None:
B
barrierye 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1514

W
wangjiawei04 已提交
1515
    def _initialize(self, is_thread_op, concurrency_idx):
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1529 1530 1531 1532 1533 1534 1535 1536 1537
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1538
                                                   self._server_endpoints)
1539 1540 1541 1542 1543 1544 1545 1546
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1547
                                           self._server_endpoints)
1548 1549 1550 1551
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
F
felixhjh 已提交
1552
        print("[OP Object] init success")
B
barriery 已提交
1553 1554 1555 1556 1557
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1558 1559 1560 1561 1562 1563 1564 1565
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1566 1567 1568 1569 1570

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1571
class RequestOp(Op):
1572 1573 1574 1575 1576 1577
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1578

B
barrierye 已提交
1579
    def __init__(self):
1580 1581 1582
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1583 1584
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1585
        # init op
1586
        try:
1587
            self.init_op()
1588
        except Exception as e:
B
barriery 已提交
1589
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1590
            os._exit(-1)
B
barrierye 已提交
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1605
                BYTES
1606
        Unsupported type:
1607
                STRING
1608 1609 1610 1611 1612 1613 1614
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1615 1616
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1617 1618 1619 1620 1621 1622
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1623
        # Set dim shape
1624 1625 1626 1627 1628 1629 1630
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1631 1632 1633 1634 1635
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1670 1671 1672 1673
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1674 1675 1676 1677 1678 1679 1680
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1681
        return np_data, np_lod
1682

B
barrierye 已提交
1683
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1702

1703
        # unpack key/value string list
1704
        for idx, key in enumerate(request.key):
1705
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1706
        log_id = request.logid
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1738 1739 1740 1741
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1742

1743 1744 1745 1746
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1747 1748

        return dict_data, log_id, None, ""
B
barrierye 已提交
1749 1750 1751


class ResponseOp(Op):
1752 1753 1754 1755 1756 1757
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1758

B
barrierye 已提交
1759
    def __init__(self, input_ops):
1760 1761 1762
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1763 1764
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1765

B
barrierye 已提交
1766
        # init op
1767
        try:
1768
            self.init_op()
1769
        except Exception as e:
B
barriery 已提交
1770 1771
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1772
            os._exit(-1)
B
barrierye 已提交
1773

1774 1775 1776 1777 1778 1779
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1780
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1781
        """
1782 1783 1784 1785 1786 1787 1788 1789
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1790
        """
B
barrierye 已提交
1791
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1792 1793 1794
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1795
            # Framework level errors
B
barrierye 已提交
1796 1797 1798 1799
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1800
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1801
                for name, var in feed.items():
1802 1803
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1804 1805 1806 1807
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1808 1809
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1810 1811
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1812 1813
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1814
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1815
                        break
1816 1817
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1818
            else:
T
TeslaZhao 已提交
1819 1820 1821
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1822
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1823
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1824
        else:
1825
            # Product level errors
T
TeslaZhao 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1838
        return resp
1839 1840 1841


class VirtualOp(Op):
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1859 1860 1861

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1862
            name=name, input_ops=None, concurrency=concurrency)
1863 1864 1865
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1866 1867 1868 1869 1870 1871 1872 1873 1874
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1875 1876
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1877
    def _actual_pred_op_names(self, op):
1878 1879 1880 1881 1882 1883 1884 1885 1886
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1887
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1888 1889 1890 1891 1892 1893 1894
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1895
    def add_output_channel(self, channel):
1896 1897 1898 1899 1900 1901 1902 1903 1904
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1905
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1906
            _LOGGER.critical(
B
barriery 已提交
1907 1908 1909
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1910
            os._exit(-1)
1911
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1912 1913
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1914
        self._outputs.append(channel)
D
dongdaxiang 已提交
1915

1916
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1917
             is_thread_op):
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1932
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1933 1934 1935
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1936 1937 1938 1939 1940 1941 1942
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1943 1944
        while True:
            try:
1945
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1946
            except ChannelStopError:
B
barriery 已提交
1947
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1948
                self._finalize(is_thread_op)
B
barrierye 已提交
1949
                break
D
dongdaxiang 已提交
1950

B
barrierye 已提交
1951
            try:
1952 1953 1954 1955
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1956
            except ChannelStopError:
B
barriery 已提交
1957
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1958
                self._finalize(is_thread_op)
B
barrierye 已提交
1959
                break