local_service_pipeline_server.py 4.8 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
W
wangjiawei04 已提交
15 16 17 18 19
from paddle_serving_server.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataEcode
from paddle_serving_server.pipeline import LocalServiceHandler
B
barriery 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
import numpy as np
import cv2
import time
import base64
import json
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
import time
import re
import base64
import logging

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, input_dicts):
        (_, input_dict), = input_dicts.items()
        data = base64.b64decode(input_dict["image"].encode('utf8'))
        data = np.fromstring(data, np.uint8)
        # Note: class variables(self.var) can only be used in process op mode
        self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
W
wangjiawei04 已提交
59
        print(self.im)
B
barriery 已提交
60 61 62
        self.ori_h, self.ori_w, _ = self.im.shape
        det_img = self.det_preprocess(self.im)
        _, self.new_h, self.new_w = det_img.shape
W
wangjiawei04 已提交
63
        print("image", det_img)
B
barriery 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        return {"image": det_img}

    def postprocess(self, input_dicts, fetch_dict):
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        out_dict = {"dt_boxes": dt_boxes, "image": self.im}
        return out_dict


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

    def preprocess(self, input_dicts):
        (_, input_dict), = input_dicts.items()
        im = input_dict["image"]
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for img in img_list:
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
            feed = {"image": norm_img}
            feed_list.append(feed)
        return feed_list

    def postprocess(self, input_dicts, fetch_dict):
        rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        res = {"res": str(res_lst)}
        return res


read_op = RequestOp()
det_op = DetOp(
    name="det",
    input_ops=[read_op],
W
wangjiawei04 已提交
116 117
    client_type="local_predictor",
    local_service_handler=LocalServiceHandler(
B
barriery 已提交
118 119 120 121 122 123 124 125 126 127
        model_config="ocr_det_model",
        workdir="det_workdir",  # defalut: "workdir"
        thread_num=2,  # defalut: 2
        mem_optim=True,  # defalut: True
        ir_optim=False,  # defalut: False
        available_port_generator=None),  # defalut: None
    concurrency=1)
rec_op = RecOp(
    name="rec",
    input_ops=[det_op],
W
wangjiawei04 已提交
128 129
    client_type="local_predictor",
    local_service_handler=LocalServiceHandler(model_config="ocr_rec_model"),
B
barriery 已提交
130 131 132
    concurrency=1)
response_op = ResponseOp(input_ops=[rec_op])

B
barriery 已提交
133
server = PipelineServer("ocr")
B
barriery 已提交
134 135 136
server.set_response_op(response_op)
server.prepare_server('config.yml')
server.run_server()