bert_reader.py 2.9 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
15 16 17
from batching import pad_batch_data
import tokenization

B
barrierye 已提交
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class BertReader():
    def __init__(self, vocab_file="", max_seq_len=128):
        self.vocab_file = vocab_file
        self.tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file)
        self.max_seq_len = max_seq_len
        self.vocab = self.tokenizer.vocab
        self.pad_id = self.vocab["[PAD]"]
        self.cls_id = self.vocab["[CLS]"]
        self.sep_id = self.vocab["[SEP]"]
        self.mask_id = self.vocab["[MASK]"]

    def pad_batch(self, token_ids, text_type_ids, position_ids):
        batch_token_ids = [token_ids]
        batch_text_type_ids = [text_type_ids]
        batch_position_ids = [position_ids]

        padded_token_ids, input_mask = pad_batch_data(
            batch_token_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id,
            return_input_mask=True)
        padded_text_type_ids = pad_batch_data(
            batch_text_type_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        padded_position_ids = pad_batch_data(
            batch_position_ids,
            max_seq_len=self.max_seq_len,
            pad_idx=self.pad_id)
        return padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask

    def process(self, sent):
        text_a = tokenization.convert_to_unicode(sent)
        tokens_a = self.tokenizer.tokenize(text_a)
        if len(tokens_a) > self.max_seq_len - 2:
            tokens_a = tokens_a[0:(self.max_seq_len - 2)]
        tokens = []
        text_type_ids = []
        tokens.append("[CLS]")
        text_type_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            text_type_ids.append(0)
        token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
        position_ids = list(range(len(token_ids)))
        p_token_ids, p_pos_ids, p_text_type_ids, input_mask = \
            self.pad_batch(token_ids, text_type_ids, position_ids)
B
barrierye 已提交
66 67 68 69 70 71
        feed_result = {
            "input_ids": p_token_ids.reshape(-1).tolist(),
            "position_ids": p_pos_ids.reshape(-1).tolist(),
            "segment_ids": p_text_type_ids.reshape(-1).tolist(),
            "input_mask": input_mask.reshape(-1).tolist()
        }
72
        return feed_result