RUN_IN_DOCKER.md 5.9 KB
Newer Older
1 2
# How to run PaddleServing in Docker

B
fix doc  
barrierye 已提交
3 4
([简体中文](./RUN_IN_DOCKER_CN.md)|English)

5 6 7 8 9 10 11 12 13 14 15 16 17
## Requirements

Docker (GPU version requires nvidia-docker to be installed on the GPU machine)

## CPU

### Get docker image

You can get images in two ways:

1. Pull image directly

   ```bash
B
barrierye 已提交
18
   docker pull hub.baidubce.com/paddlepaddle/serving:0.1.3
19 20 21 22
   ```

2. Building image based on dockerfile

B
barrierye 已提交
23
   Create a new folder and copy [Dockerfile](../tools/Dockerfile) to this folder, and run the following command:
24 25

   ```bash
B
barrierye 已提交
26
   docker build -t hub.baidubce.com/paddlepaddle/serving:0.1.3 .
27 28 29 30 31
   ```

### Create container

```bash
B
barrierye 已提交
32
docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.1.3
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it

```bash
pip install paddle-serving-server
```

### Test example

B
barrierye 已提交
48 49 50 51 52 53
Before running the GPU version of the Server side code, you need to set the `CUDA_VISIBLE_DEVICES` environment variable to specify which GPUs the prediction service uses. The following example specifies two GPUs with indexes 0 and 1:

```bash
export CUDA_VISIBLE_DEVICES=0,1
```

54 55 56 57 58 59 60 61 62 63 64 65
Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
fix doc  
barrierye 已提交
66
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --name uci &>std.log 2>err.log &
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  ```

  Running on the Client side (inside or outside the container):

  ```bash
  curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
  python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 &>std.log 2>err.log &
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```

  

## GPU

The GPU version is basically the same as the CPU version, with only some differences in interface naming (GPU version requires nvidia-docker to be installed on the GPU machine).

### Get docker image

You can also get images in two ways:

1. Pull image directly

   ```bash
B
barrierye 已提交
110
   nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu
111 112 113 114
   ```

2. Building image based on dockerfile

B
barrierye 已提交
115
   Create a new folder and copy [Dockerfile.gpu](../tools/Dockerfile.gpu) to this folder, and run the following command:
116 117

   ```bash
B
barrierye 已提交
118
   nvidia-docker build -t hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu .
119 120 121 122 123
   ```

### Create container

```bash
B
barrierye 已提交
124
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:0.1.3-gpu
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
nvidia-docker exec -it test bash
```

The `-p` option is to map the `9292` port of the container to the `9292` port of the host.

### Install PaddleServing

In order to make the image smaller, the PaddleServing package is not installed in the image. You can run the following command to install it:

```bash
pip install paddle-serving-server-gpu
```

### Test example

B
fix doc  
barrierye 已提交
140
When running the GPU Server, you need to set the GPUs used by the prediction service. By default, CPU version is used. You can configure it in two ways:
B
barrierye 已提交
141 142 143 144 145 146 147 148 149 150 151

1. Using the `CUDA_VISIBLE_DEVICES` environment variable, the following example specifies two GPUs with an index of 0 and 1:

   ```shell
    export CUDA_VISIBLE_DEVICES=0,1
   ```

2. Using the `--gpu_ids` option, which will overrides the configuration of `CUDA_VISIBLE_DEVICES`.



152 153 154 155 156 157 158 159 160 161 162 163
Get the trained Boston house price prediction model by the following command:

```bash
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

- Test HTTP service

  Running on the Server side (inside the container):

  ```bash
B
barrierye 已提交
164
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci --gpu_ids 0
165 166 167 168 169 170 171 172 173 174 175 176 177
  ```

  Running on the Client side (inside or outside the container):

  ```bash
  curl -H "Content-Type:application/json" -X POST -d '{"x": [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727, -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332], "fetch":["price"]}' http://127.0.0.1:9292/uci/prediction
  ```

- Test RPC service

  Running on the Server side (inside the container):

  ```bash
B
barrierye 已提交
178
  python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  ```

  Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):

  ```bash
  from paddle_serving_client import Client
  
  client = Client()
  client.load_client_config("uci_housing_client/serving_client_conf.prototxt")
  client.connect(["127.0.0.1:9292"])
  data = [0.0137, -0.1136, 0.2553, -0.0692, 0.0582, -0.0727,
          -0.1583, -0.0584, 0.6283, 0.4919, 0.1856, 0.0795, -0.0332]
  fetch_map = client.predict(feed={"x": data}, fetch=["price"])
  print(fetch_map)
  ```

B
barrierye 已提交
195 196 197 198 199 200



## Attention

The images provided by this document are all running images, which do not support compilation. If you want to compile from source, refer to [COMPILE](COMPILE.md).