reader_op.cpp 4.9 KB
Newer Older
W
serving  
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#include "op/reader_op.h"
#include "framework/memory.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::format::XImageReqInstance;
using baidu::paddle_serving::predictor::image_classification::Request;

int ReaderOp::inference() {
    const Request* req =
            dynamic_cast<const Request*>(get_request_message());
W
sdk-cpp  
wangguibao 已提交
15
    LOG(INFO) << "Receive request in dense service:"
W
serving  
wangguibao 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
            << req->ShortDebugString();

    ReaderOutput* res = mutable_data<ReaderOutput>();
    if (!res) {
        LOG(ERROR) << "Failed get op tls reader object output";
        return -1;
    }

    TensorVector* in = &res->tensors;
    uint32_t sample_size = req->instances_size();
    if (sample_size <= 0) {
        LOG(WARNING) << "No instances need to inference!";
        return -1;
    }

    // TODO pmeans/scales/isize/enable_crop should be configurable.
    float pmean[3] = {0.485 * 255, 0.456 * 255, 0.406 * 255};
    float scale[3] = { 1 / (0.229 * 255), 1 / (0.224 * 255), \
        1 / (0.225 * 255)};
    size_t iresize[] = {244, 244}; // row, column
    bool enable_crop = true;

    cv::Size resize;
    resize.height = iresize[0];
    resize.width = iresize[1];

    for (uint32_t si = 0; si < sample_size; si++) {
        // parse image object from x-image
        const XImageReqInstance& ins = req->instances(si);
        // read dense image from request bytes
        const char* binary = ins.image_binary().c_str();
        size_t length = ins.image_length();
        if (length == 0) {
49
            LOG(ERROR) << "Empty image, length is 0"; 
W
serving  
wangguibao 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            return -1;
        }

        _image_vec_tmp.clear();
        _image_vec_tmp.assign(binary, binary + length);
        _image_8u_tmp = cv::imdecode(cv::Mat(_image_vec_tmp), 
                CV_LOAD_IMAGE_COLOR/*1*/); // in B/G/R order.
        if (_image_8u_tmp.data == NULL) {
            LOG(ERROR) << "Image decode failed!";
            return -1;
        }

        // accumulate length
        const int HH = _image_8u_tmp.rows;
        const int WW = _image_8u_tmp.cols;
        const int CC = _image_8u_tmp.channels();

        // resize/crop
        if (_image_8u_tmp.cols != resize.width 
                || _image_8u_tmp.rows != resize.height) {
            int short_egde = std::min<int>(
                    _image_8u_tmp.cols, _image_8u_tmp.rows);
            int yy = int((_image_8u_tmp.rows - short_egde) / 2);
            int xx = int((_image_8u_tmp.cols - short_egde) / 2);
            _image_8u_tmp = cv::Mat(_image_8u_tmp, 
                    cv::Rect(xx, yy, short_egde, short_egde));
            if (_image_8u_tmp.cols != resize.width 
                    || _image_8u_tmp.rows != resize.height) {
                cv::Mat resize_image;
                cv::resize(_image_8u_tmp, resize_image, resize);
                _image_8u_tmp = resize_image;
            }

W
sdk-cpp  
wangguibao 已提交
83
            LOG(INFO) << "Succ crop one image[CHW=" 
W
serving  
wangguibao 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                << _image_8u_tmp.channels() << ", "
                << _image_8u_tmp.cols << ", "
                << _image_8u_tmp.rows << "]"
                << " from image[CHW=" << CC << ", "
                << HH << ", " << WW << "]";
        }

        // BGR->RGB transformer
        cv::cvtColor(_image_8u_tmp, _image_8u_rgb, CV_BGR2RGB);

        const int H = _image_8u_rgb.rows;
        const int W = _image_8u_rgb.cols;
        const int C = _image_8u_rgb.channels();
        size_t dense_capacity = H * W * C;

        paddle::PaddleTensor in_tensor;
        in_tensor.name = "tensor";
        in_tensor.dtype = paddle::FLOAT32;

        // shape assignment
        in_tensor.shape.push_back(1);   // batch_size

        // accoreding to training stage, the instance shape should be
        // in order of C-W-H.
        in_tensor.shape.push_back(C);
        in_tensor.shape.push_back(W);
        in_tensor.shape.push_back(H);

W
sdk-cpp  
wangguibao 已提交
112
        LOG(INFO) << "Succ read one image, C: " <<  C
W
serving  
wangguibao 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
            << ", W: " << W << ", H: " << H;

        // tls resource assignment
        size_t len = dense_capacity * sizeof(float);
        float* data = (float*) MempoolWrapper::instance().malloc(len);
        if (data == NULL) {
            LOG(ERROR) << "Failed create temp float array, "
                << "size=" << dense_capacity;
            return -1;
        }

        for (int h = 0; h < H; h++) {
            // p points to a new line
            unsigned char* p = _image_8u_rgb.ptr < unsigned char>(h);
            for (int w = 0; w < W; w++) {
                for (int c = 0; c < C; c++) {
                    // HWC(row,column,channel) -> CWH
                    data[W * H * c + W * h + w] = 
                        (p[C * w + c] - pmean[c]) * scale[c];
                }
            }
        }

        paddle::PaddleBuf pbuf(data, len);
        in_tensor.data = pbuf;

        in->push_back(in_tensor);
    }

    return 0;
}

DEFINE_OP(ReaderOp);

} // serving
} // paddle_serving
} // baidu