HOT_LOADING_IN_SERVING_CN.md 9.1 KB
Newer Older
B
barrierye 已提交
1 2 3 4
# Paddle Serving中的模型热加载

## 背景

B
barrierye 已提交
5
在实际的工业场景下,通常是远端定期不间断产出模型,线上服务端需要在服务不中断的情况下拉取新模型对旧模型进行更新迭代。
B
barrierye 已提交
6

B
barrierye 已提交
7
Paddle Serving目前支持下面几种类型的远端监控Monitor:
B
barrierye 已提交
8

B
barrierye 已提交
9 10 11 12 13 14
| Monitor类型 |                             描述                             |                           特殊选项                           |
| :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
|   General   | 远端无认证,可以通过`wget`直接访问下载文件(如无需认证的FTP,OBS等) |                 `general_host` 通用远端host                  |
|    HDFS     |            远端为HDFS,通过HDFS二进制执行相关命令            |                 `hdfs_bin` HDFS二进制的路径                  |
|     FTP     |             远端为FTP,可以通过用户名、密码访问              | `ftp_host` FTP host<br>`ftp_port` FTP port<br>`ftp_username` FTP username,默认为空<br>`ftp_password` FTP password,默认为空 |
|     AFS     |           远端为AFS,通过Hadoop-client执行相关命令           | `hadoop_bin` Hadoop二进制的路径<br>`hadoop_host` AFS host,默认为空<br>`hadoop_ugi` AFS ugi,默认为空 |
B
barrierye 已提交
15

B
barrierye 已提交
16 17 18 19 20 21 22 23 24 25 26 27
|    Monitor通用选项     |                             描述                             |                    默认值                    |
| :--------------------: | :----------------------------------------------------------: | :------------------------------------------: |
|         `type`         |                       指定Monitor类型                        |                      无                      |
|     `remote_path`      |                      指定远端的基础路径                      |                      无                      |
|  `remote_model_name`   |                   指定远端需要拉取的模型名                   |                      无                      |
| `remote_donefile_name` |           指定远端标志模型更新完毕的donefile文件名           |                      无                      |
|      `local_path`      |                       指定本地工作路径                       |                      无                      |
|   `local_model_name`   |                        指定本地模型名                        |                      无                      |
| `local_timestamp_file` | 指定本地用于热加载的时间戳文件,该文件被认为在`local_path/local_model_name`下。 |              `fluid_time_file`               |
|    `local_tmp_path`    |              指定本地存放临时文件的文件夹路径。              | `_serving_monitor_tmp`(若不存在则自动创建) |
|       `interval`       |                      指定轮询间隔时间。                      |                   10(秒)                   |
|  `unpacked_filename`   | Monitor支持tarfile打包的远程模型。如果远程模型是打包格式,则需要设置该选项来告知Monitor解压后的文件名。 |                     None                     |
B
barrierye 已提交
28

B
barrierye 已提交
29
下面通过HDFSMonitor示例来展示Paddle Serving的模型热加载功能。
B
barrierye 已提交
30

B
barrierye 已提交
31
## HDFSMonitor示例
B
barrierye 已提交
32

B
barrierye 已提交
33
示例中在`product_path`中生产模型上传至hdfs,在`server_path`中模拟服务端模型热加载:
B
barrierye 已提交
34 35

```shell
B
barrierye 已提交
36
.
B
barrierye 已提交
37 38
├── product_path
└── server_path
B
barrierye 已提交
39 40
```

B
barrierye 已提交
41
### 生产模型
B
barrierye 已提交
42

B
barrierye 已提交
43
`product_path`下运行下面的Python代码生产模型,每隔 60 秒会产出 Boston 房价预测模型`uci_housing_model`并上传至hdfs的`/`路径下,上传完毕后更新时间戳文件`donefile`并上传至hdfs的`/`路径下。
B
barrierye 已提交
44 45 46

```python
import os
B
barrierye 已提交
47
import sys
B
barrierye 已提交
48
import time
B
barrierye 已提交
49
import tarfile
B
barrierye 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
import paddle
import paddle.fluid as fluid
import paddle_serving_client.io as serving_io

train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.train(), buf_size=500),
    batch_size=16)

test_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.test(), buf_size=500),
    batch_size=16)

x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')

y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_loss)

place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

B
barrierye 已提交
78
def push_to_hdfs(local_file_path, remote_path):
B
barrierye 已提交
79
    hdfs_bin = '/hadoop-3.1.2/bin/hdfs'
B
barrierye 已提交
80 81 82
    os.system('{} dfs -put -f {} {}'.format(
      hdfs_bin, local_file_path, remote_path))

B
barrierye 已提交
83
name = "uci_housing"
B
barrierye 已提交
84 85 86 87 88
for pass_id in range(30):
    for data_train in train_reader():
        avg_loss_value, = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data_train),
                                  fetch_list=[avg_loss])
B
barrierye 已提交
89 90 91 92 93
    # Simulate the production model every other period of time
    time.sleep(60)
    model_name = "{}_model".format(name)
    client_name = "{}_client".format(name)
    serving_io.save_model(model_name, client_name,
B
barrierye 已提交
94 95
                          {"x": x}, {"price": y_predict},
                          fluid.default_main_program())
B
barrierye 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    # Package model
    tar_name = "{}.tar.gz".format(name)
    tar = tarfile.open(tar_name, 'w:gz')
    tar.add(model_name)
    tar.close()

    # Push packaged model file to hdfs
    push_to_hdfs(tar_name, '/')

    # Generate donefile
    donefile_name = 'donefile'
    os.system('touch {}'.format(donefile_name))

    # Push donefile to hdfs
    push_to_hdfs(donefile_name, '/')
B
barrierye 已提交
111 112
```

B
barrierye 已提交
113
hdfs上的文件如下列所示:
B
barrierye 已提交
114

B
barrierye 已提交
115 116 117
```bash
# hdfs dfs -ls /
Found 2 items
B
barrierye 已提交
118 119
-rw-r--r--   1 root supergroup          0 2020-04-02 02:54 /donefile
-rw-r--r--   1 root supergroup       2101 2020-04-02 02:54 /uci_housing.tar.gz
B
barrierye 已提交
120 121
```

B
barrierye 已提交
122
### 服务端加载模型
B
barrierye 已提交
123

B
barrierye 已提交
124
进入`server_path`文件夹。
B
barrierye 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

#### 用初始模型启动Server端

这里使用预训练的 Boston 房价预测模型作为初始模型:

```shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```

启动Server端:

```shell
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292
```

#### 执行监控程序

B
barrierye 已提交
143
用下面的命令来执行HDFS监控程序:
B
barrierye 已提交
144 145

```shell
B
barrierye 已提交
146
python -m paddle_serving_server.monitor \
B
barrierye 已提交
147
--type='hdfs' --hdfs_bin='/hadoop-3.1.2/bin/hdfs' --remote_path='/' \
B
barrierye 已提交
148
--remote_model_name='uci_housing.tar.gz' --remote_donefile_name='donefile' \
B
barrierye 已提交
149
--local_path='.' --local_model_name='uci_housing_model' \
B
barrierye 已提交
150 151
--local_timestamp_file='fluid_time_file' --local_tmp_path='_tmp' \
--unpacked_filename='uci_housing_model'
B
barrierye 已提交
152 153
```

B
barrierye 已提交
154
上面代码通过轮询方式监控远程HDFS地址`/`的时间戳文件`/donefile`,当时间戳变更则认为远程模型已经更新,将远程模型`/uci_housing_model`拉取到本地临时路径`./_tmp/uci_housing_model`下,更新本地模型`./uci_housing_model`以及Paddle Serving的时间戳文件`./uci_housing_model/fluid_time_file`
B
barrierye 已提交
155 156 157 158 159 160 161 162 163 164 165 166

#### 查看Server日志

通过下面命令查看Server的运行日志:

```shell
tail -f log/serving.INFO
```

日志中显示模型已经被热加载:

```shell
B
barrierye 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
I0330 09:38:40.087316  7361 server.cpp:150] Begin reload framework...
W0330 09:38:40.087399  7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:38:40.087414  7361 manager.h:131] Finish reload 1 workflow(s)
I0330 09:38:50.087535  7361 server.cpp:150] Begin reload framework...
W0330 09:38:50.087641  7361 infer.h:250] begin reload model[uci_housing_model].
I0330 09:38:50.087972  7361 infer.h:66] InferEngineCreationParams: model_path = uci_housing_model, enable_memory_optimization = 0, static_optimization = 0, force_update_static_cache = 0
I0330 09:38:50.088027  7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated.
I0330 09:38:50.088393  7361 analysis_predictor.cc:841] MODEL VERSION: 1.7.1
I0330 09:38:50.088413  7361 analysis_predictor.cc:843] PREDICTOR VERSION: 1.6.3
I0330 09:38:50.089519  7361 graph_pattern_detector.cc:96] ---  detected 1 subgraphs
I0330 09:38:50.090925  7361 analysis_predictor.cc:470] ======= optimize end =======
W0330 09:38:50.090986  7361 infer.h:472] Succ load common model[0x7fc83c06abd0], path[uci_housing_model].
I0330 09:38:50.091022  7361 analysis_predictor.cc:88] Profiler is deactivated, and no profiling report will be generated.
W0330 09:38:50.091050  7361 infer.h:509] td_core[0x7fc83c0ad770] clone model from pd_core[0x7fc83c06abd0] succ, cur_idx[0].
...
W0330 09:38:50.091784  7361 infer.h:489] Succ load clone model, path[uci_housing_model]
W0330 09:38:50.091794  7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:38:50.091820  7361 manager.h:131] Finish reload 1 workflow(s)
I0330 09:39:00.091987  7361 server.cpp:150] Begin reload framework...
W0330 09:39:00.092161  7361 infer.h:656] Succ reload version engine: 18446744073709551615
I0330 09:39:00.092177  7361 manager.h:131] Finish reload 1 workflow(s)
B
barrierye 已提交
188
```