operator.py 79.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18
import threading
import multiprocessing
H
HexToString 已提交
19
from paddle_serving_client import Client
20 21 22
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
29
from io import BytesIO
B
barrierye 已提交
30 31 32 33 34 35
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
36

37
from .error_catch import ErrorCatch, CustomException, CustomExceptionCode
B
barrierye 已提交
38
from .proto import pipeline_service_pb2
T
TeslaZhao 已提交
39
from .channel import (ThreadChannel, ProcessChannel, ChannelDataErrcode,
B
bug fix  
barriery 已提交
40
                      ChannelData, ChannelDataType, ChannelStopError,
T
TeslaZhao 已提交
41
                      ChannelTimeoutError, ProductErrCode)
B
barrierye 已提交
42
from .util import NameGenerator
B
barriery 已提交
43
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
44
from . import local_service_handler
45
from .pipeline_client import PipelineClient as PPClient
46

47
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
48 49
_op_name_gen = NameGenerator("Op")

50 51 52 53 54 55 56 57 58 59 60 61 62 63
# data type of tensor to numpy_data
_TENSOR_DTYPE_2_NUMPY_DATA_DTYPE = {
    0: "int64",  # VarType.INT64
    1: "float32",  # VarType.FP32
    2: "int32",  # VarType.INT32
    3: "float64",  # VarType.FP64
    4: "int16",  # VarType.int16
    5: "float16",  # VarType.FP32
    6: "uint16",  # VarType.BF16
    7: "uint8",  # VarType.UINT8
    8: "int8",  # VarType.INT8
    9: "bool",  # VarType.BOOL
    10: "complex64",  # VarType.COMPLEX64
    11: "complex128",  # VarType.COMPLEX128
64 65
    12: "string",  # load by numpy
    13: "bytes",  # load by numpy
66 67
}

D
dongdaxiang 已提交
68 69 70

class Op(object):
    def __init__(self,
B
barrierye 已提交
71
                 name=None,
D
dongdaxiang 已提交
72
                 input_ops=[],
B
barriery 已提交
73 74
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
75
                 client_config=None,
W
wangjiawei04 已提交
76
                 client_type=None,
B
barriery 已提交
77 78
                 concurrency=None,
                 timeout=None,
T
TeslaZhao 已提交
79
                 retry=0,
B
barriery 已提交
80
                 batch_size=None,
81
                 auto_batching_timeout=None,
82 83
                 local_service_handler=None,
                 jump_to_ops=[]):
B
barriery 已提交
84
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
85
        if name is None:
B
barrierye 已提交
86
            name = _op_name_gen.next()
87
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
88
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
89
        self.set_input_ops(input_ops)
90
        self.set_jump_to_ops(jump_to_ops)
B
barrierye 已提交
91

W
wangjiawei04 已提交
92
        self._local_service_handler = local_service_handler
B
barriery 已提交
93
        self._server_endpoints = server_endpoints
B
barrierye 已提交
94
        self._fetch_names = fetch_list
B
barriery 已提交
95
        self._client_config = client_config
W
wangjiawei04 已提交
96
        self.client_type = client_type
B
barriery 已提交
97
        self._timeout = timeout
98
        self._retry = max(1, retry)
B
barriery 已提交
99 100 101
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

102 103
        self._input = None
        self._outputs = []
B
barrierye 已提交
104

B
barriery 已提交
105 106 107
        self._server_use_profile = False
        self._tracer = None

108 109 110
        # for grpc_pipeline predict mode. False, string key/val; True, tensor format.
        self._pack_tensor_format = False

B
barriery 已提交
111 112 113 114 115 116
        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False

117 118 119 120 121 122 123 124 125 126 127 128 129
    # for feed/fetch dict cehck
    @staticmethod
    def get_feed_fetch_list(client):
        from paddle_serving_app.local_predict import LocalPredictor
        if isinstance(client, Client):
            feed_names = client.get_feed_names()
            fetch_names = client.get_fetch_names()
        if isinstance(client, LocalPredictor):
            feed_names = client.feed_names_
            fetch_names = client.fetch_names_
        return feed_names, fetch_names
              

B
barriery 已提交
130
    def init_from_dict(self, conf):
131 132 133 134 135 136 137 138 139 140 141
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
        """
B
barriery 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")
        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
162
            _LOGGER.debug(
B
barriery 已提交
163 164 165 166 167 168 169
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

170 171 172
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
173
        self.device_type = -1
174 175 176
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
177
        self.precision = "fp32"
T
TeslaZhao 已提交
178 179 180 181 182
        self.use_mkldnn = False
        self.mkldnn_cache_capacity = 0
        self.mkldnn_op_list = None
        self.mkldnn_bf16_op_list = None

B
barriery 已提交
183 184 185 186 187 188
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
189
                self.client_type = conf["client_type"]
190
            else:
W
wangjiawei04 已提交
191
                if self._local_service_handler is None:
B
barriery 已提交
192
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
193 194
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
195
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
196
                    self.client_type = local_service_conf.get("client_type")
197 198
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
199
                    self.device_type = local_service_conf.get("device_type")
200 201 202 203
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
204
                    self.precision = local_service_conf.get("precision")
T
TeslaZhao 已提交
205 206 207 208 209 210 211 212
                    self.use_mkldnn = local_service_conf.get("use_mkldnn")
                    self.mkldnn_cache_capacity = local_service_conf.get(
                        "mkldnn_cache_capacity")
                    self.mkldnn_op_list = local_service_conf.get(
                        "mkldnn_op_list")
                    self.mkldnn_bf16_op_list = local_service_conf.get(
                        "mkldnn_bf16_op_list")

213
                    if self.model_config is None:
B
barriery 已提交
214 215 216 217
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
218 219
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
220
                                model_config=self.model_config,
W
wangjiawei04 已提交
221
                                client_type=self.client_type,
222 223
                                workdir=self.workdir,
                                thread_num=self.thread_num,
224
                                device_type=self.device_type,
225 226
                                devices=self.devices,
                                mem_optim=self.mem_optim,
227
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
228 229 230 231 232 233
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_bf16_op_list,
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list)
W
wangjiawei04 已提交
234 235 236 237 238 239 240 241 242 243 244 245
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
246
                            service_handler = local_service_handler.LocalServiceHandler(
247
                                model_config=self.model_config,
W
wangjiawei04 已提交
248
                                client_type=self.client_type,
249 250
                                workdir=self.workdir,
                                thread_num=self.thread_num,
251
                                device_type=self.device_type,
252
                                devices=self.devices,
253 254
                                fetch_names=self._fetch_names,
                                mem_optim=self.mem_optim,
255
                                ir_optim=self.ir_optim,
T
TeslaZhao 已提交
256 257 258 259 260 261
                                precision=self.precision,
                                use_mkldnn=self.use_mkldnn,
                                mkldnn_cache_capacity=self.
                                mkldnn_cache_capacity,
                                mkldnn_op_list=self.mkldnn_op_list,
                                mkldnn_bf16_op_list=self.mkldnn_bf16_op_list)
W
wangjiawei04 已提交
262 263 264 265
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
266
                else:
B
barriery 已提交
267
                    self.with_serving = True
W
wangjiawei04 已提交
268
                    self._local_service_handler.prepare_server(
B
barriery 已提交
269
                    )  # get fetch_list
W
wangjiawei04 已提交
270
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
271 272 273
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
274
                    if self._client_config is None:
W
wangjiawei04 已提交
275
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
276
                        )
B
barriery 已提交
277
                    if self._fetch_names is None:
W
wangjiawei04 已提交
278
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
279
                        )
B
barriery 已提交
280 281
        else:
            self.with_serving = True
B
barriery 已提交
282

283 284 285 286 287 288 289 290 291 292 293
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
294
                              ", ".join([op.name for op in self._input_ops
295 296 297 298
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
299

300
    def launch_local_rpc_service(self):
301 302 303 304 305 306 307 308 309
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
310
        if self._local_service_handler is None:
B
barriery 已提交
311 312
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
313
                          " service: local_service_handler is None."))
B
barriery 已提交
314
            return
W
wangjiawei04 已提交
315
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
316 317 318
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
319
        self._local_service_handler.start_server()
B
barriery 已提交
320
        _LOGGER.info("Op({}) use local rpc service at port: {}"
321 322
                     .format(self.name, port))

B
barriery 已提交
323
    def use_default_auto_batching_config(self):
324 325 326 327 328 329 330 331 332
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
333
        if self._batch_size != 1:
334 335
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
336 337
            self._batch_size = 1
        if self._auto_batching_timeout != None:
338
            _LOGGER.warning(
B
barriery 已提交
339 340
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
341
            self._auto_batching_timeout = None
B
barriery 已提交
342

B
barrierye 已提交
343
    def use_profiler(self, use_profile):
B
barrierye 已提交
344
        self._server_use_profile = use_profile
345

B
barriery 已提交
346 347 348
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
349
    def init_client(self, client_config, server_endpoints):
350 351 352 353 354 355 356 357 358 359 360 361
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
362
        if self.with_serving == False:
B
barriery 已提交
363
            _LOGGER.info("Op({}) has no client (and it also do not "
364
                         "run the process function)".format(self.name))
B
barrierye 已提交
365
            return None
W
wangjiawei04 已提交
366
        if self.client_type == 'brpc':
B
barrierye 已提交
367 368
            client = Client()
            client.load_client_config(client_config)
369
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client) 
370 371
        elif self.client_type == 'pipeline_grpc':
            client = PPClient()
W
wangjiawei04 已提交
372 373 374 375
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
376
            self.right_feed_names, self.right_fetch_names = self.get_feed_fetch_list(client)
377
        else:
B
barriery 已提交
378
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
379
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
380 381 382
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
383 384
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
385
        _LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
B
barrierye 已提交
386
        return client
387 388 389 390 391

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
392 393 394 395 396 397 398 399 400 401
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
402 403 404 405 406
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
407
                _LOGGER.critical(
B
barriery 已提交
408 409
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
410
                os._exit(-1)
411
            self._input_ops.append(op)
D
dongdaxiang 已提交
412

413 414 415
    def set_pack_tensor_format(self, is_tensor_format=False):
        self._pack_tensor_format = is_tensor_format

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    def get_jump_to_ops(self):
        return self._jump_to_ops

    def set_jump_to_ops(self, ops):
        """
        Set jump to ops, then, this op can send channeldata to output channel.

        Args:
            ops: op list to be jumpped

        Returns:
            None.
        """
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]

        self._jump_to_ops = []
        for op in ops:
            if not isinstance(op, Op):
                _LOGGER.critical(
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
                os._exit(-1)
            self._jump_to_ops.append(op)

    def is_jump_op(self):
        """
        The op has _jump_to_ops members or not.

        Args:
            None

        Returns:
            True or False
        """
        return len(self._jump_to_ops) > 0

    def check_jumping(self, input_data):
        """
        Check whether to send data to jump ops.WhileOp needs to rewrite 
        this interface. this function returns False default.
     
        Args:
            input_data: input data to be preprocessed

        Returns:
            True, send data to the output channel of jump ops
            False, send data to output channel.
        """
        return False

    def get_output_channels_of_jump_ops(self):
        """
        Get output channels of jump ops

        Args:
            None

        Returns:
            list of channels
        """
        channels = []
        if self.is_jump_op() is False:
            return channels
        for op in self._jump_to_ops:
            _LOGGER.info("op:{} extend op._get_output_channels:{}".format(
                op.name, op._get_output_channels()))
            channels.extend(op._get_output_channels())

        _LOGGER.info("get_output_channels_of_jump_ops, channels:{}".format(
            channels))
        return channels

489
    def add_input_channel(self, channel):
490 491 492 493
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
494
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
495
            _LOGGER.critical(
B
barriery 已提交
496 497 498
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
499
            os._exit(-1)
500 501
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
502

503
    def clean_input_channel(self):
B
barrierye 已提交
504 505 506 507
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
508

509
    def add_output_channel(self, channel):
510 511 512 513 514 515 516 517 518 519
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
520
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
521
            _LOGGER.critical(
B
barriery 已提交
522 523
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
524
            os._exit(-1)
525 526
        channel.add_producer(self.name)
        self._outputs.append(channel)
527
        _LOGGER.debug("op:{} add output_channel {}".format(self.name, channel))
D
dongdaxiang 已提交
528

529
    def clean_output_channels(self):
B
barrierye 已提交
530 531 532 533 534
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

535
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
536 537 538 539 540 541
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
542
            data_id: inner unique id, increase auto
543
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
544 545

        Return:
T
TeslaZhao 已提交
546
            output_data: data for process stage
T
TeslaZhao 已提交
547 548 549 550 551
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
552
        # multiple previous Op
B
barrierye 已提交
553
        if len(input_dicts) != 1:
554 555
            _LOGGER.critical(
                self._log(
B
barriery 已提交
556 557
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
558
            os._exit(-1)
D
dongdaxiang 已提交
559

B
barrierye 已提交
560
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
561
        return input_dict, False, None, ""
B
barrierye 已提交
562

563
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
564 565 566 567 568
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
569 570
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
571 572 573 574

        Returns:
            call_result: predict result
        """
575 576 577 578 579

        call_result = None
        err_code = ChannelDataErrcode.OK.value
        err_info = ""

W
wangjiawei04 已提交
580
        if self.client_type == "local_predictor":
581 582 583 584 585 586 587 588
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for local_predictor mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"

W
wangjiawei04 已提交
589 590
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
591
                fetch=self._fetch_names,
W
wangjiawei04 已提交
592 593
                batch=True,
                log_id=typical_logid)
594 595 596 597 598 599 600 601

        elif self.client_type == "brpc":
            err, err_info = ChannelData.check_batch_npdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                        npdata in process for brpc mode.".format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be npdata"
W
wangjiawei04 已提交
602
            call_result = self.client.predict(
603
                feed=feed_batch[0],
W
wangjiawei04 已提交
604
                fetch=self._fetch_names,
W
wangjiawei04 已提交
605 606
                batch=True,
                log_id=typical_logid)
607 608 609 610 611 612 613 614 615 616 617 618 619 620

        elif self.client_type == "pipeline_grpc":
            err, err_info = ChannelData.check_dictdata(feed_batch)
            if err != 0:
                _LOGGER.error(
                    self._log("Failed to run process: {}. feed_batch must be \
                       npdata in process for pipeline_grpc mode."
                              .format(err_info)))
                return call_result, ChannelDataErrcode.TYPE_ERROR.value, "feed_batch must be dict"

            call_result = self.client.predict(
                feed_dict=feed_batch[0],
                fetch=self._fetch_names,
                asyn=False,
621
                pack_tensor_format=self._pack_tensor_format,
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                profile=False)
            if call_result is None:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. call_result is None."))
                return call_result, ChannelDataErrcode.UNKNOW.value, "pipeline_grpc error"
            if call_result.err_no != 0:
                _LOGGER.error(
                    self._log("Failed in pipeline_grpc. err_no:{}, err_info:{}".
                              format(call_result.err_no, call_result.err_msg)))
                return call_result, ChannelDataErrcode(
                    call_result.err_no).value, call_result.err_msg

            new_dict = {}
            err_code = ChannelDataErrcode(call_result.err_no).value
            err_info = call_result.err_msg
            for idx, key in enumerate(call_result.key):
                new_dict[key] = [call_result.value[idx]]
            call_result = new_dict

        return call_result, err_code, err_info
642

643
    def postprocess(self, input_data, fetch_data, data_id=0, log_id=0):
T
TeslaZhao 已提交
644 645 646
        """
        In postprocess stage, assemble data for next op or output.
        Args:
T
TeslaZhao 已提交
647 648
            input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
            fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
649
            data_id: inner unique id, increase auto
650
            log_id: logid, 0 default
T
TeslaZhao 已提交
651 652

        Returns: 
T
TeslaZhao 已提交
653
            fetch_dict: fetch result must be dict type.
T
TeslaZhao 已提交
654 655 656 657
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
T
TeslaZhao 已提交
658 659 660
        fetch_dict = {}
        if isinstance(fetch_data, dict):
            fetch_dict = fetch_data
T
TeslaZhao 已提交
661
        return fetch_dict, None, ""
D
dongdaxiang 已提交
662

B
barrierye 已提交
663
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
677
        data_id, error_channeldata = None, None
B
barrierye 已提交
678
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
679 680 681 682
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
683
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
684
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
685 686

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
687
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
688 689 690
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
691
            if client_need_profile:
B
barrierye 已提交
692
                profile_set |= data.profile_data_set
B
barrierye 已提交
693
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
694
                profile_set, log_id)
B
barrierye 已提交
695 696 697 698 699

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
700
                                 profile_str=None,
B
barrierye 已提交
701
                                 client_need_profile=False,
B
barrierye 已提交
702
                                 profile_set=None):
T
TeslaZhao 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
717 718
        if name is None:
            name = self.name
B
barrierye 已提交
719

B
barriery 已提交
720
        # add profile into channeldata
B
barrierye 已提交
721
        if client_need_profile and profile_set is not None:
B
barriery 已提交
722 723
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
724
            data.add_profile(profile_set)
B
barrierye 已提交
725

B
barriery 已提交
726 727 728
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
729
    def start_with_process(self):
730 731 732 733 734 735 736 737 738 739
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
740 741 742
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
743
        process = []
B
barrierye 已提交
744
        for concurrency_idx in range(self.concurrency):
745 746
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
747
                args=(concurrency_idx, self._get_input_channel(),
748 749
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
750
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
751 752
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
753 754
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
                      self.get_output_channels_of_jump_ops()))
B
barriery 已提交
755
            p.daemon = True
756
            p.start()
W
wangjiawei04 已提交
757 758
            process.append(p)
        return process
759

W
wangjiawei04 已提交
760
    def start_with_thread(self):
761 762 763 764 765 766 767 768 769 770
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
771 772 773
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
774 775 776 777

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
778
            self.local_predictor = self._local_service_handler.get_client(0)
779

780
        threads = []
B
barrierye 已提交
781
        for concurrency_idx in range(self.concurrency):
782 783
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
784
                args=(concurrency_idx, self._get_input_channel(),
785 786
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
787
                      self.device_type, self.devices, self.mem_optim,
T
TeslaZhao 已提交
788 789
                      self.ir_optim, self.precision, self.use_mkldnn,
                      self.mkldnn_cache_capacity, self.mkldnn_op_list,
790 791
                      self.mkldnn_bf16_op_list, self.is_jump_op(),
                      self.get_output_channels_of_jump_ops()))
B
barriery 已提交
792 793 794
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
795 796 797 798
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
799
    def init_op(self):
B
barrierye 已提交
800 801
        pass

T
TeslaZhao 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
816
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
817 818
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
819
        skip_process_dict = {}
820 821 822 823 824 825
        @ErrorCatch
        def preprocess_help(self, parsed_data, data_id, logid_dict):
            preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                parsed_data, data_id, logid_dict.get(data_id))
            return preped_data, is_skip_process, prod_errcode, prod_errinfo
            
826 827
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
828 829 830
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
831
            process_res, resp = preprocess_help(self, parsed_data, data_id, logid_dict)
F
felixhjh 已提交
832
            if resp.err_no == CustomExceptionCode.OK.value:
833
                preped_data, is_skip_process, prod_errcode, prod_errinfo = process_res
T
TeslaZhao 已提交
834 835
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
836 837 838 839 840 841 842 843 844 845 846
                if prod_errcode is not None:
                    _LOGGER.error("data_id: {} return product error. Product ErrNo:{}, Product ErrMsg: {}".format(data_id, prod_errcode, prod_errinfo))
                    error_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
                
T
TeslaZhao 已提交
847
                error_channeldata = ChannelData(
848 849 850 851 852
                  error_code=resp.err_no,
                  error_info=resp.err_msg,
                  data_id=data_id,
                  log_id=log_id)
                skip_process_dict[data_id] = True 
T
TeslaZhao 已提交
853

854 855 856 857
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
858
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
875
        _LOGGER.debug("{} Running process".format(op_info_prefix))
876 877
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
878
        is_skip_process = False
T
TeslaZhao 已提交
879
        data_ids = list(preped_data_dict.keys())
T
TeslaZhao 已提交
880 881

        # skip process stage
T
TeslaZhao 已提交
882 883
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
T
TeslaZhao 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
        if self.with_serving is False or is_skip_process is True:
            midped_data_dict = preped_data_dict
            _LOGGER.warning("(data_id={} log_id={}) OP={} skip process stage. " \
                "with_serving={}, is_skip_process={}".format(data_ids[0],
                logid_dict.get(data_ids[0]), self.name, self.with_serving,
                is_skip_process))
            return midped_data_dict, err_channeldata_dict

        # use typical_logid to mark batch data
        # data_ids is one self-increasing unique key. 
        typical_logid = data_ids[0]
        if len(data_ids) != 1:
            for data_id in data_ids:
                _LOGGER.info(
                    "(data_id={} logid={}) Auto-batching is On Op={}!!" \
                    "We selected logid={} (from batch: {}) as a " \
                    "representative for logging.".format(
                    data_id, logid_dict.get(data_id), self.name,
                    typical_logid, data_ids))

        one_input = preped_data_dict[data_ids[0]]
        feed_batch = []
        feed_dict = {}
        cur_offset = 0
        input_offset_dict = {}
        batch_input = False

        if isinstance(one_input, dict):
            # For dict type, data structure is dict.
            # Merge multiple dicts for data_ids into one dict.
            # feed_batch is the input param of predict func.
            # input_offset_dict is used for data restration[data_ids]
            if len(data_ids) == 1:
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
            else:
919 920
                for data_id in data_ids:
                    for key, val in preped_data_dict[data_id].items():
T
TeslaZhao 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
                        has_val = feed_dict.get(key)
                        if has_val is None:
                            feed_dict[key] = val
                            continue
                        # merge 2 np.arrray
                        if isinstance(val, np.ndarray):
                            feed_dict[key] = np.append(
                                feed_dict[key], val, axis=0)
                feed_batch.append(feed_dict)

            for data_id in data_ids:
                start = cur_offset
                for key, val in preped_data_dict[data_id].items():
                    if isinstance(val, (list, np.ndarray)):
                        cur_offset += len(val)
                    else:
                        cur_offset += 1
                    break
                input_offset_dict[data_id] = [start, cur_offset]
        elif isinstance(one_input, list):
            # For list type, data structure of one_input is [dict, dict, ...]
            # Data structure of feed_batch is [dict1_1, dict1_2, dict2_1, ...]   
            # Data structure of input_offset_dict is { data_id : [start, end] }
            batch_input = True
            for data_id in data_ids:
                feed_batch.extend(preped_data_dict[data_id])
                data_size = len(preped_data_dict[data_id])
                start = cur_offset
                cur_offset = start + data_size
                input_offset_dict[data_id] = [start, cur_offset]
        else:
            _LOGGER.critical(
                "(data_id={} log_id={}){} Failed to process: expect input type is dict"
                " or list(batch input), but get {}".format(data_ids[
                    0], typical_logid, op_info_prefix, type(one_input)))
            for data_id in data_ids:
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = "expect input type is dict or list, but get {}".format(
                    type(one_input))
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=error_code,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict
B
barrierye 已提交
966

T
TeslaZhao 已提交
967 968
        midped_batch = None
        error_code = ChannelDataErrcode.OK.value
969
        error_info = ""
T
TeslaZhao 已提交
970 971 972 973
        if self._timeout <= 0:
            # No retry
            try:
                if batch_input is False:
974 975
                    midped_batch, error_code, error_info = self.process(
                        feed_batch, typical_logid)
T
TeslaZhao 已提交
976 977 978
                else:
                    midped_batch = []
                    for idx in range(len(feed_batch)):
979 980 981 982
                        predict_res, error_code, error_info = self.process(
                            [feed_batch[idx]], typical_logid)
                        if error_code != ChannelDataErrcode.OK.value:
                            break
T
TeslaZhao 已提交
983 984 985 986 987 988 989 990 991 992 993 994
                        midped_batch.append(predict_res)
            except Exception as e:
                error_code = ChannelDataErrcode.UNKNOW.value
                error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                    data_ids[0], typical_logid, op_info_prefix, data_ids, e)
                _LOGGER.error(error_info, exc_info=True)
        else:
            # retry N times configed in yaml files.
            for i in range(self._retry):
                try:
                    # time out for each process
                    if batch_input is False:
995
                        midped_batch, error_code, error_info = func_timeout.func_timeout(
B
barriery 已提交
996 997 998
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
999
                    else:
T
TeslaZhao 已提交
1000 1001
                        midped_batch = []
                        for idx in range(len(feed_batch)):
1002
                            predict_res, error_code, error_info = func_timeout.func_timeout(
T
TeslaZhao 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                                self._timeout,
                                self.process,
                                args=([feed_batch[idx]], typical_logid))
                            midped_batch[idx].append(predict_res)

                except func_timeout.FunctionTimedOut as e:
                    if i + 1 >= self._retry:
                        error_code = ChannelDataErrcode.TIMEOUT.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): " \
                            "exceeded retry count.".format(typical_logid, op_info_prefix, data_ids)
                        _LOGGER.error(error_info)
B
barrierye 已提交
1014
                    else:
T
TeslaZhao 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
                        _LOGGER.warning(
                            "(log_id={}) {} Failed to process(batch: {}): timeout,"
                            " and retrying({}/{})...".format(
                                typical_logid, op_info_prefix, data_ids, i + 1,
                                self._retry))
                except Exception as e:
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
                        typical_logid, op_info_prefix, data_ids, e)
                    _LOGGER.error(error_info, exc_info=True)
                    break
                else:
                    break

        # 2 kinds of errors
        if error_code != ChannelDataErrcode.OK.value or midped_batch is None:
1031
            error_info = "(log_id={}) {} failed to predict. Please check the input dict and checkout PipelineServingLogs/pipeline.log for more details.".format(
T
TeslaZhao 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
                typical_logid, self.name)
            _LOGGER.error(error_info)
            for data_id in data_ids:
                err_channeldata_dict[data_id] = ChannelData(
                    error_code=ChannelDataErrcode.CLIENT_ERROR.value,
                    error_info=error_info,
                    data_id=data_id,
                    log_id=logid_dict.get(data_id))
            return midped_data_dict, err_channeldata_dict

        # Split batch infer result to each data_ids
        if batch_input is False:
            var_names = midped_batch.keys()
            lod_var_names = set()
            lod_offset_names = set()
            # midped_batch is dict type for single input 
            for name in var_names:
                lod_offset_name = "{}.lod".format(name)
                if lod_offset_name in var_names:
                    _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
                        typical_logid, op_info_prefix, name))
                    lod_var_names.add(name)
                    lod_offset_names.add(lod_offset_name)

            for idx, data_id in enumerate(data_ids):
                midped_data_dict[data_id] = {}

            for name, value in midped_batch.items():
                if name in lod_offset_names:
                    continue
                if name in lod_var_names:
                    # lodtensor
                    lod_offset_name = "{}.lod".format(name)
                    lod_offset = midped_batch[lod_offset_name]
                    for idx, data_id in enumerate(data_ids):
                        data_offset_left = input_offset_dict[data_id][0]
                        data_offset_right = input_offset_dict[data_id][1]
                        lod_offset_left = lod_offset[data_offset_left]
                        lod_offset_right = lod_offset[data_offset_right]
                        midped_data_dict[data_id][name] = value[
                            lod_offset_left:lod_offset_right]
                        midped_data_dict[data_id][lod_offset_name] = \
                            lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
                else:
                    # normal tensor
                    for idx, data_id in enumerate(data_ids):
                        start = input_offset_dict[data_id][0]
                        end = input_offset_dict[data_id][1]
                        midped_data_dict[data_id][name] = value[start:end]
1081
        else:
T
TeslaZhao 已提交
1082 1083 1084 1085 1086
            # midped_batch is list type for batch input
            for idx, data_id in enumerate(data_ids):
                start = input_offset_dict[data_id][0]
                end = input_offset_dict[data_id][1]
                midped_data_dict[data_id] = midped_batch[start:end]
1087 1088
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
1089
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
1104
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
1105 1106
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
1107 1108 1109 1110 1111
        @ErrorCatch
        def postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict):
            postped_data, prod_errcode, prod_errinfo = self.postprocess(parsed_data_dict[data_id], 
              midped_data, data_id, logid_dict.get(data_id))
            if not isinstance(postped_data, dict):
F
felixhjh 已提交
1112
                raise CustomException(CustomExceptionCode.TYPE_ERROR, "postprocess should return dict", True)
1113 1114
            return postped_data, prod_errcode, prod_errinfo

B
bug fix  
barriery 已提交
1115
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
1116
            log_id = logid_dict.get(data_id)
1117
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
1118 1119
            prod_errcode, prod_errinfo = None, None

1120
            post_res, resp = postprocess_help(self, parsed_data_dict, midped_data, data_id, logid_dict)
H
huangjianhui 已提交
1121
            if resp.err_no == CustomExceptionCode.OK.value:
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                postped_data, prod_errcode, prod_errinfo = post_res
                if prod_errcode is not None:
                  # product errors occured
                    err_channeldata = ChannelData(
                      error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                      error_info="",
                      prod_error_code=prod_errcode,
                      prod_error_info=prod_errinfo,
                      data_id=data_id,
                      log_id=log_id)
            else:
T
TeslaZhao 已提交
1133
                err_channeldata = ChannelData(
1134 1135
                    error_code=resp.err_no,
                    error_info=resp.err_msg,
T
TeslaZhao 已提交
1136 1137 1138
                    data_id=data_id,
                    log_id=log_id)

1139 1140 1141 1142
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
            output_data = None
            err, _ = ChannelData.check_npdata(postped_data)
            if err == 0:
                output_data = ChannelData(
                  ChannelDataType.CHANNEL_NPDATA.value,
                  npdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            else:
                output_data = ChannelData(
                  ChannelDataType.DICT.value,
                  dictdata=postped_data,
                  data_id=data_id,
                  log_id=log_id)
            postped_data_dict[data_id] = output_data
B
barriery 已提交
1158
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
1159
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
1160 1161

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
1162
                                 timeout, op_info_prefix):
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
1188
                        front_start_time = int(round(_time() * 1000000))
B
barriery 已提交
1189 1190 1191
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
1192 1193
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
1194
                                break
B
barriery 已提交
1195 1196
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
1197 1198 1199
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
1200
                        _LOGGER.debug(
1201 1202
                            "_auto_batching_generator get {} channeldata from op:{} input channel. time={}".
                            format(idx, op_name, front_start_time))
B
barriery 已提交
1203
                    except ChannelTimeoutError:
B
barriery 已提交
1204 1205
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
1206
                        break
B
barriery 已提交
1207 1208
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
1209
            yield batch
1210

1211
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
1224
        parsed_data_dict = collections.OrderedDict()
1225 1226
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
1227
        logid_dict = {}
B
bug fix  
barriery 已提交
1228
        for channeldata_dict in batch:
1229
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
1230
                    client_need_profile, profile_set, log_id) = \
1231 1232 1233 1234 1235
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
1236
                logid_dict[data_id] = log_id
1237 1238 1239
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
1240 1241
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
1242

T
TeslaZhao 已提交
1243
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
1244

W
wangjiawei04 已提交
1245
    def _run(self, concurrency_idx, input_channel, output_channels,
1246
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
T
TeslaZhao 已提交
1247
             device_type, devices, mem_optim, ir_optim, precision, use_mkldnn,
1248 1249
             mkldnn_cache_capacity, mkldnn_op_list, mkldnn_bf16_op_list,
             is_jump_op, output_channels_of_jump_ops):
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
1267
            device_type: support multiple devices
1268 1269
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
1270
            ir_optim: use calculation chart optimization, False default.
T
TeslaZhao 已提交
1271 1272 1273 1274 1275
            precision: inference precision, e.g. "fp32", "fp16", "int8", "bf16"
            use_mkldnn: use mkldnn, default False.
            mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
            mkldnn_op_list: OP list optimized by mkldnn, None default.
            mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
1276 1277
            is_jump_op: OP has jump op list or not, False default.
            output_channels_of_jump_ops: all output channels of jump ops.
1278 1279 1280 1281

        Returns:
            None
        """
1282
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1283

1284
        # init ops
B
barriery 已提交
1285
        profiler = None
B
barrierye 已提交
1286
        try:
1287 1288 1289 1290 1291 1292
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
1293
                    device_type=device_type,
1294 1295
                    devices=devices,
                    mem_optim=mem_optim,
1296
                    ir_optim=ir_optim,
T
TeslaZhao 已提交
1297 1298 1299 1300 1301
                    precision=precision,
                    use_mkldnn=use_mkldnn,
                    mkldnn_cache_capacity=mkldnn_cache_capacity,
                    mkldnn_op_list=mkldnn_op_list,
                    mkldnn_bf16_op_list=mkldnn_bf16_op_list)
1302 1303 1304

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
1305 1306
                self.local_predictor = self.service_handler.get_client(
                    concurrency_idx)
1307
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1308
            profiler = self._initialize(is_thread_op, concurrency_idx)
1309

B
barrierye 已提交
1310
        except Exception as e:
B
barriery 已提交
1311
            _LOGGER.critical(
T
TeslaZhao 已提交
1312
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1313
                exc_info=True)
B
barrierye 已提交
1314
            os._exit(-1)
B
barriery 已提交
1315
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1316

B
barriery 已提交
1317
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1318 1319 1320 1321
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1322
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1323

B
barriery 已提交
1324
        start, end = None, None
B
barrierye 已提交
1325
        trace_que = collections.deque()
B
barrierye 已提交
1326
        while True:
B
barriery 已提交
1327
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1328
            try:
B
barriery 已提交
1329
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1330
            except ChannelStopError:
B
barriery 已提交
1331
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1332
                self._finalize(is_thread_op)
B
barrierye 已提交
1333
                break
B
barriery 已提交
1334
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1335
            in_time = end - start
1336 1337
            _LOGGER.debug("op:{} in_time_end:{}".format(op_info_prefix,
                                                        time.time()))
1338

B
barriery 已提交
1339 1340
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1341
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1342 1343
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1344
            except ChannelStopError:
B
barriery 已提交
1345
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1346
                self._finalize(is_thread_op)
B
barriery 已提交
1347
                break
1348 1349 1350
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1351 1352
            _LOGGER.debug("op:{} parse_end:{}".format(op_info_prefix,
                                                      time.time()))
1353

1354 1355 1356 1357 1358 1359 1360
            # print
            front_cost = int(round(_time() * 1000000)) - start
            for data_id, parsed_data in parsed_data_dict.items():
                _LOGGER.debug(
                    "(data_id={}) POP INPUT CHANNEL! op:{}, cost:{} ms".format(
                        data_id, self.name, front_cost / 1000.0))

1361
            # preprecess
B
barriery 已提交
1362
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1363 1364
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1365
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1366
            prep_time = end - start
1367 1368
            _LOGGER.debug("op:{} preprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), prep_time))
1369
            try:
T
TeslaZhao 已提交
1370
                # put error requests into output channel, skip process and postprocess stage
1371
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1372
                    self._push_to_output_channels(
B
barriery 已提交
1373 1374
                        data=err_channeldata,
                        channels=output_channels,
1375 1376 1377
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1378
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1379 1380
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1381
            if len(preped_data_dict) == 0:
1382 1383
                continue

B
barrierye 已提交
1384
            # process
B
barriery 已提交
1385
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1386
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1387
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1388
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1389
            midp_time = end - start
1390 1391
            _LOGGER.debug("op:{} process_end:{}, cost:{}".format(
                op_info_prefix, time.time(), midp_time))
1392 1393
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1394
                    self._push_to_output_channels(
B
barriery 已提交
1395 1396
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1397 1398
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1399
            except ChannelStopError:
B
barriery 已提交
1400
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1401 1402 1403
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1404
                continue
1405 1406

            # postprocess
B
barriery 已提交
1407
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1408
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1409
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1410
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1411
            postp_time = end - start
1412
            after_postp_time = _time()
1413 1414
            _LOGGER.debug("op:{} postprocess_end:{}, cost:{}".format(
                op_info_prefix, time.time(), postp_time))
1415 1416
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1417
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1418
                        data=err_channeldata,
B
barriery 已提交
1419
                        channels=output_channels,
B
barriery 已提交
1420 1421
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1422
            except ChannelStopError:
B
barriery 已提交
1423
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1424 1425 1426
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1427
                continue
1428

1429
            # push data to channel (if run succ)
B
barriery 已提交
1430
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1431
            try:
B
barriery 已提交
1432
                profile_str = profiler.gen_profile_str()
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
                if self.is_jump_op() is True and self.check_jumping(
                        postped_data_dict) is True:
                    # push data to output channel of ops to be jumped 
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels_of_jump_ops,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
                else:
                    # push data to output channel.
                    for data_id, postped_data in postped_data_dict.items():
                        if self._server_use_profile:
                            sys.stderr.write(profile_str)
                        self._push_to_output_channels(
                            data=postped_data,
                            channels=output_channels,
                            profile_str=profile_str,
                            client_need_profile=need_profile_dict[data_id],
                            profile_set=profile_dict[data_id])
                        after_outchannel_time = _time()
                        _LOGGER.debug(
                            "(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms".
                            format(data_id, self.name, (after_outchannel_time -
                                                        after_postp_time) *
                                   1000))
B
barrierye 已提交
1468
            except ChannelStopError:
B
barriery 已提交
1469
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1470
                self._finalize(is_thread_op)
B
barrierye 已提交
1471
                break
B
barriery 已提交
1472
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1473
            out_time = end - start
1474
            after_outchannel_time = int(round(_time() * 1000000))
B
barriery 已提交
1475
            if trace_buffer is not None:
B
barrierye 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1493

W
wangjiawei04 已提交
1494
    def _initialize(self, is_thread_op, concurrency_idx):
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
1508 1509 1510 1511 1512 1513 1514 1515 1516
        @ErrorCatch
        def init_helper(self, is_thread_op, concurrency_idx):
            if is_thread_op:
                with self._for_init_op_lock:
                    if not self._succ_init_op:
                        # for the threaded version of Op, each thread cannot get its concurrency_idx
                        self.concurrency_idx = None
                        # init client
                        self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1517
                                                   self._server_endpoints)
1518 1519 1520 1521 1522 1523 1524 1525
                        # user defined
                        self.init_op()
                        self._succ_init_op = True
                        self._succ_close_op = False
            else:
                self.concurrency_idx = concurrency_idx
                # init client
                self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1526
                                           self._server_endpoints)
1527 1528 1529 1530
                # user defined
                self.init_op() 
        
        init_helper(self, is_thread_op, concurrency_idx)
B
barriery 已提交
1531 1532 1533 1534 1535
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1536 1537 1538 1539 1540 1541 1542 1543
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1544 1545 1546 1547 1548

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1549
class RequestOp(Op):
1550 1551 1552 1553 1554 1555
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1556

B
barrierye 已提交
1557
    def __init__(self):
1558 1559 1560
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1561 1562
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1563
        # init op
1564
        try:
1565
            self.init_op()
1566
        except Exception as e:
B
barriery 已提交
1567
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1568
            os._exit(-1)
B
barrierye 已提交
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
    def proto_tensor_2_numpy(self, tensor):
        """
        Convert proto tensor to numpy array, The supported types are as follows:
                INT64
                FP32
		INT32
		FP64
		INT16
		FP16
		BF16
		UINT8
		INT8
		BOOL
1583
                BYTES
1584
        Unsupported type:
1585
                STRING
1586 1587 1588 1589 1590 1591 1592
                COMPLEX64
                COMPLEX128

        Args:
            tensor: one tensor in request.tensors.

        Returns:
T
TeslaZhao 已提交
1593 1594
            np_data: np.ndnumpy, the tensor data is converted to numpy.
            lod_info: np.ndnumpy, lod info of the tensor data, None default.
1595 1596 1597 1598 1599 1600
        """
        if tensor is None or tensor.elem_type is None or tensor.name is None:
            _LOGGER.error("input params of tensor is wrong. tensor: {}".format(
                tensor))
            return None

T
TeslaZhao 已提交
1601
        # Set dim shape
1602 1603 1604 1605 1606 1607 1608
        dims = []
        if tensor.shape is None:
            dims.append(1)
        else:
            for one_dim in tensor.shape:
                dims.append(one_dim)

T
TeslaZhao 已提交
1609 1610 1611 1612 1613
        # Set up 2-d lod tensor
        np_lod = None
        if len(tensor.lod) > 0:
            np_lod = np.array(tensor.lod).astype(int32).reshape(2, -1)

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
        np_data = None
        _LOGGER.info("proto_to_numpy, name:{}, type:{}, dims:{}".format(
            tensor.name, tensor.elem_type, dims))
        if tensor.elem_type == 0:
            # VarType: INT64
            np_data = np.array(tensor.int64_data).astype(int64).reshape(dims)
        elif tensor.elem_type == 1:
            # VarType: FP32
            np_data = np.array(tensor.float_data).astype(float32).reshape(dims)
        elif tensor.elem_type == 2:
            # VarType: INT32
            np_data = np.array(tensor.int_data).astype(int32).reshape(dims)
        elif tensor.elem_type == 3:
            # VarType: FP64
            np_data = np.array(tensor.float64_data).astype(float64).reshape(
                dims)
        elif tensor.elem_type == 4:
            # VarType: INT16
            np_data = np.array(tensor.int_data).astype(int16).reshape(dims)
        elif tensor.elem_type == 5:
            # VarType: FP16
            np_data = np.array(tensor.float_data).astype(float16).reshape(dims)
        elif tensor.elem_type == 6:
            # VarType: BF16
            np_data = np.array(tensor.uint32_data).astype(uint16).reshape(dims)
        elif tensor.elem_type == 7:
            # VarType: UINT8
            np_data = np.array(tensor.uint32_data).astype(uint8).reshape(dims)
        elif tensor.elem_type == 8:
            # VarType: INT8
            np_data = np.array(tensor.int_data).astype(int8).reshape(dims)
        elif tensor.elem_type == 9:
            # VarType: BOOL
            np_data = np.array(tensor.bool_data).astype(bool).reshape(dims)
1648 1649 1650 1651
        elif tensor.elem_type == 13:
            # VarType: BYTES
            byte_data = BytesIO(tensor.byte_data)
            np_data = np.load(byte_data, allow_pickle=True)
1652 1653 1654 1655 1656 1657 1658
        else:
            _LOGGER.error("Sorry, the type {} of tensor {} is not supported.".
                          format(tensor.elem_type, tensor.name))
            raise ValueError(
                "Sorry, the type {} of tensor {} is not supported.".format(
                    tensor.elem_type, tensor.name))

T
TeslaZhao 已提交
1659
        return np_data, np_lod
1660

B
barrierye 已提交
1661
    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1680

1681
        # unpack key/value string list
1682
        for idx, key in enumerate(request.key):
1683
            dict_data[key] = request.value[idx]
T
TeslaZhao 已提交
1684
        log_id = request.logid
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

        # unpack proto.tensors data.
        for one_tensor in request.tensors:
            name = one_tensor.name
            elem_type = one_tensor.elem_type

            if one_tensor.name is None:
                _LOGGER.error("Tensor name is None.")
                raise ValueError("Tensor name is None.")

            numpy_dtype = _TENSOR_DTYPE_2_NUMPY_DATA_DTYPE.get(elem_type)
            if numpy_dtype is None:
                _LOGGER.error(
                    "elem_type:{} is dismatch in unpack_request_package.",
                    format(elem_type))
                raise ValueError("elem_type:{} error".format(elem_type))

            if numpy_dtype == "string":
                new_string = ""
                if one_tensor.str_data is None:
                    _LOGGER.error(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                    raise ValueError(
                        "str_data of tensor:{} is None, elem_type is {}.".
                        format(name, elem_type))
                for one_str in one_tensor.str_data:
                    new_string += one_str

                dict_data[name] = new_string
            else:
T
TeslaZhao 已提交
1716 1717 1718 1719
                np_data, np_lod = self.proto_tensor_2_numpy(one_tensor)
                dict_data[name] = np_data
                if np_lod is not None:
                    dict_data[name + ".lod"] = np_lod
1720

1721 1722 1723 1724
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}, time:{}"
                     .format(log_id, request.clientip, request.name,
                             request.method, time.time()))
T
TeslaZhao 已提交
1725 1726

        return dict_data, log_id, None, ""
B
barrierye 已提交
1727 1728 1729


class ResponseOp(Op):
1730 1731 1732 1733 1734 1735
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1736

B
barrierye 已提交
1737
    def __init__(self, input_ops):
1738 1739 1740
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1741 1742
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
1743

B
barrierye 已提交
1744
        # init op
1745
        try:
1746
            self.init_op()
1747
        except Exception as e:
B
barriery 已提交
1748 1749
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1750
            os._exit(-1)
B
barrierye 已提交
1751

1752 1753 1754 1755 1756 1757
        # init ResponseOp
        self.is_pack_tensor = False

    def set_pack_format(self, isTensor=False):
        self.is_pack_tensor = isTensor

B
barrierye 已提交
1758
    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1759
        """
1760 1761 1762 1763 1764 1765 1766 1767
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1768
        """
B
barrierye 已提交
1769
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1770 1771 1772
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1773
            # Framework level errors
B
barrierye 已提交
1774 1775 1776 1777
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1778
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1779
                for name, var in feed.items():
1780 1781
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1782 1783 1784 1785
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1786 1787
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1788 1789
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1790 1791
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1792
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1793
                        break
1794 1795
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1796
            else:
T
TeslaZhao 已提交
1797 1798 1799
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1800
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1801
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1802
        else:
1803
            # Product level errors
T
TeslaZhao 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1816
        return resp
1817 1818 1819


class VirtualOp(Op):
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1837 1838 1839

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1840
            name=name, input_ops=None, concurrency=concurrency)
1841 1842 1843
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1844 1845 1846 1847 1848 1849 1850 1851 1852
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1853 1854
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1855
    def _actual_pred_op_names(self, op):
1856 1857 1858 1859 1860 1861 1862 1863 1864
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1865
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1866 1867 1868 1869 1870 1871 1872
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1873
    def add_output_channel(self, channel):
1874 1875 1876 1877 1878 1879 1880 1881 1882
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1883
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1884
            _LOGGER.critical(
B
barriery 已提交
1885 1886 1887
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1888
            os._exit(-1)
1889
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1890 1891
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1892
        self._outputs.append(channel)
D
dongdaxiang 已提交
1893

1894
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1895
             is_thread_op):
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1910
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1911 1912 1913
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1914 1915 1916 1917 1918 1919 1920
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1921 1922
        while True:
            try:
1923
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1924
            except ChannelStopError:
B
barriery 已提交
1925
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1926
                self._finalize(is_thread_op)
B
barrierye 已提交
1927
                break
D
dongdaxiang 已提交
1928

B
barrierye 已提交
1929
            try:
1930 1931 1932 1933
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1934
            except ChannelStopError:
B
barriery 已提交
1935
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1936
                self._finalize(is_thread_op)
B
barrierye 已提交
1937
                break