general_reader_op.cpp 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_reader_op.h"
16 17 18 19
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
20
#include "core/general-server/op/general_infer_helper.h"
21 22
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
W
wangjiawei04 已提交
23
#include "core/predictor/framework/resource.h"
G
guru4elephant 已提交
24
#include "core/util/include/timer.h"
25 26 27 28 29

namespace baidu {
namespace paddle_serving {
namespace serving {

G
guru4elephant 已提交
30
using baidu::paddle_serving::Timer;
31 32 33 34 35
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
W
wangjiawei04 已提交
36
using baidu::paddle_serving::predictor::InferManager;
37 38 39 40 41

int conf_check(const Request *req,
               const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
  int var_num = req->insts(0).tensor_array_size();
  if (var_num != model_config->_feed_type.size()) {
B
barriery 已提交
42 43 44
    LOG(ERROR) << "feed var number not match: model config["
               << model_config->_feed_type.size() << "] vs. actual[" << var_num
               << "]";
45 46
    return -1;
  }
47 48 49

  VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size();

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  for (int i = 0; i < var_num; ++i) {
    if (model_config->_feed_type[i] !=
        req->insts(0).tensor_array(i).elem_type()) {
      LOG(ERROR) << "feed type not match.";
      return -1;
    }
    if (model_config->_feed_shape[i].size() ==
        req->insts(0).tensor_array(i).shape_size()) {
      for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
        req->insts(0).tensor_array(i).shape(j);
        if (model_config->_feed_shape[i][j] !=
            req->insts(0).tensor_array(i).shape(j)) {
          LOG(ERROR) << "feed shape not match.";
          return -1;
        }
      }
    } else {
      LOG(ERROR) << "feed shape not match.";
      return -1;
    }
  }
  return 0;
}

int GeneralReaderOp::inference() {
  // reade request from client
W
wangjiawei04 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  // TODO: only support one engine here
  std::string engine_name = "general_infer_0";
  const Request *req = dynamic_cast<const Request*>(get_request_message());
  uint64_t log_id = req->log_id();
  int input_var_num = 0;
  std::vector<int64_t> elem_type;
  std::vector<int64_t> elem_size;
  std::vector<int64_t> capacity;
  int var_num = req->insts(0).tensor_array_size();
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();
  elem_type.resize(var_num);
  elem_size.resize(var_num);
  capacity.resize(var_num);
  for (int i = 0; i < var_num; ++i) {
    std::string tensor_name = model_config->_feed_name[i];
    std::cout << "START Tensor Name: " <<tensor_name << std::endl;
    auto lod_tensor = InferManager::instance().GetInputHandle(engine_name.c_str(), tensor_name.c_str());
    std::cout << "PICK lod tensor. " << std::endl;
    std::vector<std::vector<size_t>> lod;
    std::vector<int> shape;
    // get lod info here
    if (req->insts(0).tensor_array(i).lod_size() > 0) {
      lod.resize(1);
      for (int k = 0; k < req->insts(0).tensor_array(i).lod_size(); ++k) {
        lod[0].push_back(req->insts(0).tensor_array(i).lod(k));
      }
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
        VLOG(2) << "(logid=" << log_id << ") shape for var[" << i
                << "]: " << dim;
        capacity[i] *= dim;
        shape.push_back(dim);
      }
      VLOG(2) << "(logid=" << log_id << ") var[" << i
              << "] is tensor, capacity: " << capacity[i];
    }
    else {
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
        VLOG(2) << "(logid=" << log_id << ") shape for var[" << i
                << "]: " << dim;
        capacity[i] *= dim;
        shape.push_back(dim);
      }
      VLOG(2) << "(logid=" << log_id << ") var[" << i
              << "] is tensor, capacity: " << capacity[i];
    }
    lod_tensor->SetLoD(lod);
    lod_tensor->Reshape(shape);
    std::cout << "FINI Set Lod and Reshape, and elem type: "<< elem_type[i] << std::endl;
    // insert data here
    if (req->insts(0).tensor_array(i).elem_type() == 0) {
      // TODO: Copy twice here, can optimize
      int elem_num = req->insts(0).tensor_array(i).int64_data_size();
      std::vector<int64_t> data(elem_num);
      int64_t* dst_ptr = data.data();
      for (int k = 0; k < elem_num; ++k) {
        dst_ptr[k] = req->insts(0).tensor_array(i).int64_data(k);
      }
      lod_tensor->CopyFromCpu(dst_ptr);
    } else if(req->insts(0).tensor_array(i).elem_type() == 1) {
      int elem_num = req->insts(0).tensor_array(i).float_data_size();
      std::vector<float> data(elem_num);
      float* dst_ptr = data.data();
      for (int k = 0; k < elem_num; ++k) {
        dst_ptr[k] = req->insts(0).tensor_array(i).float_data(k);
      }
      lod_tensor->CopyFromCpu(dst_ptr);
    } else if(req->insts(0).tensor_array(i).elem_type()== 2) {
      int elem_num = req->insts(0).tensor_array(i).int_data_size();
      std::vector<int32_t> data(elem_num);
      int32_t* dst_ptr = data.data();
      for (int k = 0; k < elem_num; ++k) {
        dst_ptr[k] = req->insts(0).tensor_array(i).int_data(k);
      }
      lod_tensor->CopyFromCpu(dst_ptr);
    }
    std::cout << "FINISH Tensor Name: " <<tensor_name << std::endl;
  }
160 161 162 163 164 165
  return 0;
}
DEFINE_OP(GeneralReaderOp);
}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu