benchmark.py 4.9 KB
Newer Older
F
felixhjh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
import base64
import yaml
import requests
import time
import json

from paddle_serving_server.pipeline import PipelineClient
import numpy as np
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency


def parse_benchmark(filein, fileout):
    with open(filein, "r") as fin:
        res = yaml.load(fin, yaml.FullLoader)
        del_list = []
        for key in res["DAG"].keys():
            if "call" in key:
                del_list.append(key)
        for key in del_list:
            del res["DAG"][key]
    with open(fileout, "w") as fout:
        yaml.dump(res, fout, default_flow_style=False)


def gen_yml(device, gpu_id):
    fin = open("config.yml", "r")
    config = yaml.load(fin, yaml.FullLoader)
    fin.close()
    config["dag"]["tracer"] = {"interval_s": 10}
    if device == "gpu":
        config["op"]["imagenet"]["local_service_conf"]["device_type"] = 1
        config["op"]["imagenet"]["local_service_conf"]["devices"] = gpu_id
    else:
        config["op"]["imagenet"]["local_service_conf"]["device_type"] = 0
    with open("config2.yml", "w") as fout:
        yaml.dump(config, fout, default_flow_style=False)


def cv2_to_base64(image):
    return base64.b64encode(image).decode('utf8')


def run_http(idx, batch_size):
    print("start thread ({})".format(idx))
    url = "http://127.0.0.1:18080/imagenet/prediction"
    start = time.time()

    with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
        image_data1 = file.read()
    image = cv2_to_base64(image_data1)
    keys, values = [], []
    for i in range(batch_size):
        keys.append("image_{}".format(i))
        values.append(image)
    data = {"key": keys, "value": values}
    latency_list = []
    start_time = time.time()
    total_num = 0
    while True:
        l_start = time.time()
        r = requests.post(url=url, data=json.dumps(data))
        print(r.json())
        l_end = time.time()
        latency_list.append(l_end * 1000 - l_start * 1000)
        total_num += 1
        if time.time() - start_time > 20:
            break
    end = time.time()
    return [[end - start], latency_list, [total_num]]


def multithread_http(thread, batch_size):
    multi_thread_runner = MultiThreadRunner()
    start = time.time()
    result = multi_thread_runner.run(run_http, thread, batch_size)
    end = time.time()
    total_cost = end - start
    avg_cost = 0
    total_number = 0
    for i in range(thread):
        avg_cost += result[0][i]
        total_number += result[2][i]
    avg_cost = avg_cost / thread
    print("Total cost: {}s".format(total_cost))
    print("Each thread cost: {}s. ".format(avg_cost))
    print("Total count: {}. ".format(total_number))
    print("AVG_QPS: {} samples/s".format(batch_size * total_number /
                                         total_cost))
    show_latency(result[1])


def run_rpc(thread, batch_size):
    client = PipelineClient()
    client.connect(['127.0.0.1:18080'])
    start = time.time()
    test_img_dir = "imgs/"
    for img_file in os.listdir(test_img_dir):
        with open(os.path.join(test_img_dir, img_file), 'rb') as file:
            image_data = file.read()
        image = cv2_to_base64(image_data)
        start_time = time.time()
        while True:
            ret = client.predict(feed_dict={"image": image}, fetch=["res"])
            if time.time() - start_time > 10:
                break
    end = time.time()
    return [[end - start]]


def multithread_rpc(thraed, batch_size):
    multi_thread_runner = MultiThreadRunner()
    result = multi_thread_runner.run(run_rpc, thread, batch_size)


if __name__ == "__main__":
    if sys.argv[1] == "yaml":
        mode = sys.argv[2]  # brpc/  local predictor
        thread = int(sys.argv[3])
        device = sys.argv[4]
        if device == "gpu":
            gpu_id = sys.argv[5]
        else:
            gpu_id = None
        gen_yml(device, gpu_id)
    elif sys.argv[1] == "run":
        mode = sys.argv[2]  # http/ rpc
        thread = int(sys.argv[3])
        batch_size = int(sys.argv[4])
        if mode == "http":
            multithread_http(thread, batch_size)
        elif mode == "rpc":
            multithread_rpc(thread, batch_size)
    elif sys.argv[1] == "dump":
        filein = sys.argv[2]
        fileout = sys.argv[3]
        parse_benchmark(filein, fileout)