serve.py 12.0 KB
Newer Older
G
guru4elephant 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
G
guru4elephant 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
    Host a trained paddle model with one line command
    Example:
G
guru4elephant 已提交
18
        python -m paddle_serving_server.serve --model ./serving_server_model --port 9292
G
guru4elephant 已提交
19
"""
G
guru4elephant 已提交
20
import argparse
Z
zhangjun 已提交
21
import os
H
HexToString 已提交
22 23 24
import json
import base64
import time
Z
zhangjun 已提交
25
from multiprocessing import Pool, Process
M
MRXLT 已提交
26
from flask import Flask, request
W
wangjiawei04 已提交
27
import sys
T
TeslaZhao 已提交
28 29 30 31
if sys.version_info.major == 2:
    from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
elif sys.version_info.major == 3:
    from http.server import BaseHTTPRequestHandler, HTTPServer
G
guru4elephant 已提交
32

Z
update  
zhangjun 已提交
33

Z
zhangjun 已提交
34
def serve_args():
G
guru4elephant 已提交
35
    parser = argparse.ArgumentParser("serve")
B
barrierye 已提交
36
    parser.add_argument(
Z
zhangjun 已提交
37
        "--thread", type=int, default=2, help="Concurrency of server")
B
barrierye 已提交
38
    parser.add_argument(
Z
zhangjun 已提交
39
        "--port", type=int, default=9292, help="Port of the starting gpu")
B
barrierye 已提交
40
    parser.add_argument(
Z
zhangjun 已提交
41 42
        "--device", type=str, default="gpu", help="Type of device")
    parser.add_argument("--gpu_ids", type=str, default="", help="gpu ids")
G
guru4elephant 已提交
43
    parser.add_argument(
Z
zhangjun 已提交
44
        "--model", type=str, default="", help="Model for serving")
B
barrierye 已提交
45 46 47 48 49 50
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
    parser.add_argument(
Z
zhangjun 已提交
51 52 53
        "--name", type=str, default="None", help="Default service name")
    parser.add_argument(
        "--use_mkl", default=False, action="store_true", help="Use MKL")
M
MRXLT 已提交
54
    parser.add_argument(
M
MRXLT 已提交
55
        "--mem_optim_off",
M
MRXLT 已提交
56 57 58
        default=False,
        action="store_true",
        help="Memory optimize")
M
MRXLT 已提交
59
    parser.add_argument(
M
MRXLT 已提交
60
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
M
MRXLT 已提交
61 62 63
    parser.add_argument(
        "--max_body_size",
        type=int,
M
bug fix  
MRXLT 已提交
64
        default=512 * 1024 * 1024,
M
MRXLT 已提交
65
        help="Limit sizes of messages")
H
HexToString 已提交
66 67 68 69 70
    parser.add_argument(
        "--use_encryption_model",
        default=False,
        action="store_true",
        help="Use encryption model")
B
barrierye 已提交
71 72 73 74 75
    parser.add_argument(
        "--use_multilang",
        default=False,
        action="store_true",
        help="Use Multi-language-service")
Z
zhangjun 已提交
76 77 78 79 80 81
    parser.add_argument(
        "--use_trt", default=False, action="store_true", help="Use TensorRT")
    parser.add_argument(
        "--use_lite", default=False, action="store_true", help="Use PaddleLite")
    parser.add_argument(
        "--use_xpu", default=False, action="store_true", help="Use XPU")
T
TeslaZhao 已提交
82 83 84 85 86 87 88 89 90 91
    parser.add_argument(
        "--product_name",
        type=str,
        default=None,
        help="product_name for authentication")
    parser.add_argument(
        "--container_id",
        type=str,
        default=None,
        help="container_id for authentication")
G
guru4elephant 已提交
92 93
    return parser.parse_args()

Z
update  
zhangjun 已提交
94

Z
zhangjun 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
def start_standard_model(serving_port):  # pylint: disable=doc-string-missing
    args = parse_args()
    thread_num = args.thread
    model = args.model
    port = serving_port
    workdir = args.workdir
    device = args.device
    mem_optim = args.mem_optim_off is False
    ir_optim = args.ir_optim
    max_body_size = args.max_body_size
    use_mkl = args.use_mkl
    use_encryption_model = args.use_encryption_model
    use_multilang = args.use_multilang

    if model == "":
        print("You must specify your serving model")
        exit(-1)

    import paddle_serving_server as serving
    op_maker = serving.OpMaker()
    read_op = op_maker.create('general_reader')
    general_infer_op = op_maker.create('general_infer')
    general_response_op = op_maker.create('general_response')

    op_seq_maker = serving.OpSeqMaker()
    op_seq_maker.add_op(read_op)
    op_seq_maker.add_op(general_infer_op)
    op_seq_maker.add_op(general_response_op)

    server = None
    if use_multilang:
        server = serving.MultiLangServer()
    else:
        server = serving.Server()
    server.set_op_sequence(op_seq_maker.get_op_sequence())
    server.set_num_threads(thread_num)
    server.set_memory_optimize(mem_optim)
    server.set_ir_optimize(ir_optim)
    server.use_mkl(use_mkl)
    server.set_max_body_size(max_body_size)
    server.set_port(port)
    server.use_encryption_model(use_encryption_model)
    if args.product_name != None:
        server.set_product_name(args.product_name)
    if args.container_id != None:
        server.set_container_id(args.container_id)

    server.load_model_config(model)
    server.prepare_server(workdir=workdir, port=port, device=device)
    server.run_server()

Z
update  
zhangjun 已提交
146

Z
zhangjun 已提交
147
def start_gpu_card_model(index, gpuid, port, args):  # pylint: disable=doc-string-missing
Z
zhangjun 已提交
148 149 150 151 152 153 154
    workdir = args.workdir
    gpuid = int(gpuid)
    device = "gpu"
    if gpuid == -1:
        device = "cpu"
    elif gpuid >= 0:
        port = port + index
G
guru4elephant 已提交
155 156
    thread_num = args.thread
    model = args.model
M
MRXLT 已提交
157
    mem_optim = args.mem_optim_off is False
M
MRXLT 已提交
158
    ir_optim = args.ir_optim
M
MRXLT 已提交
159
    use_mkl = args.use_mkl
Z
zhangjun 已提交
160
    max_body_size = args.max_body_size
B
barrierye 已提交
161
    use_multilang = args.use_multilang
Z
zhangjun 已提交
162 163
    if gpuid >= 0:
        workdir = "{}_{}".format(args.workdir, gpuid)
G
guru4elephant 已提交
164 165 166 167

    if model == "":
        print("You must specify your serving model")
        exit(-1)
G
guru4elephant 已提交
168

Z
zhangjun 已提交
169
    import paddle_serving_server as serving
G
guru4elephant 已提交
170 171 172 173 174 175 176 177 178 179
    op_maker = serving.OpMaker()
    read_op = op_maker.create('general_reader')
    general_infer_op = op_maker.create('general_infer')
    general_response_op = op_maker.create('general_response')

    op_seq_maker = serving.OpSeqMaker()
    op_seq_maker.add_op(read_op)
    op_seq_maker.add_op(general_infer_op)
    op_seq_maker.add_op(general_response_op)

B
barrierye 已提交
180 181 182 183
    if use_multilang:
        server = serving.MultiLangServer()
    else:
        server = serving.Server()
G
guru4elephant 已提交
184
    server.set_op_sequence(op_seq_maker.get_op_sequence())
G
guru4elephant 已提交
185
    server.set_num_threads(thread_num)
Z
zhangjun 已提交
186
    server.use_mkl(use_mkl)
M
MRXLT 已提交
187
    server.set_memory_optimize(mem_optim)
M
MRXLT 已提交
188
    server.set_ir_optimize(ir_optim)
M
MRXLT 已提交
189
    server.set_max_body_size(max_body_size)
Z
zhangjun 已提交
190 191 192 193 194 195 196 197 198 199
    if args.use_trt:
        server.set_trt()

    if args.use_lite:
        server.set_lite()

    server.set_device(device)
    if args.use_xpu:
        server.set_xpu()

200 201 202 203
    if args.product_name != None:
        server.set_product_name(args.product_name)
    if args.container_id != None:
        server.set_container_id(args.container_id)
G
guru4elephant 已提交
204

G
guru4elephant 已提交
205
    server.load_model_config(model)
Z
zhangjun 已提交
206 207 208 209 210 211 212
    server.prepare_server(
        workdir=workdir,
        port=port,
        device=device,
        use_encryption_model=args.use_encryption_model)
    if gpuid >= 0:
        server.set_gpuid(gpuid)
G
guru4elephant 已提交
213 214
    server.run_server()

W
wangjiawei04 已提交
215

Z
zhangjun 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
def start_multi_card(args, serving_port=None):  # pylint: disable=doc-string-missing
    gpus = ""
    if serving_port == None:
        serving_port = args.port
    if args.gpu_ids == "":
        gpus = []
    else:
        gpus = args.gpu_ids.split(",")
        if "CUDA_VISIBLE_DEVICES" in os.environ:
            env_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
            for ids in gpus:
                if int(ids) >= len(env_gpus):
                    print(
                        " Max index of gpu_ids out of range, the number of CUDA_VISIBLE_DEVICES is {}."
                        .format(len(env_gpus)))
                    exit(-1)
        else:
            env_gpus = []
    if args.use_lite:
Z
update  
zhangjun 已提交
235
        print("run using paddle-lite.")
Z
zhangjun 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        start_gpu_card_model(-1, -1, args)
    elif len(gpus) <= 0:
        print("gpu_ids not set, going to run cpu service.")
        start_gpu_card_model(-1, -1, serving_port, args)
    else:
        gpu_processes = []
        for i, gpu_id in enumerate(gpus):
            p = Process(
                target=start_gpu_card_model,
                args=(
                    i,
                    gpu_id,
                    serving_port,
                    args, ))
            gpu_processes.append(p)
        for p in gpu_processes:
            p.start()
        for p in gpu_processes:
            p.join()


H
HexToString 已提交
257 258 259 260 261 262 263 264
class MainService(BaseHTTPRequestHandler):
    def get_available_port(self):
        default_port = 12000
        for i in range(1000):
            if port_is_available(default_port + i):
                return default_port + i

    def start_serving(self):
Z
zhangjun 已提交
265
        start_multi_card(args, serving_port)
H
HexToString 已提交
266 267 268 269 270

    def get_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
H
HexToString 已提交
271 272
            key = base64.b64decode(post_data["key"].encode())
            with open(args.model + "/key", "wb") as f:
H
HexToString 已提交
273 274 275 276 277 278 279
                f.write(key)
            return True

    def check_key(self, post_data):
        if "key" not in post_data:
            return False
        else:
H
HexToString 已提交
280 281
            key = base64.b64decode(post_data["key"].encode())
            with open(args.model + "/key", "rb") as f:
H
HexToString 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
                cur_key = f.read()
            return (key == cur_key)

    def start(self, post_data):
        post_data = json.loads(post_data)
        global p_flag
        if not p_flag:
            if args.use_encryption_model:
                print("waiting key for model")
                if not self.get_key(post_data):
                    print("not found key in request")
                    return False
            global serving_port
            global p
            serving_port = self.get_available_port()
            p = Process(target=self.start_serving)
            p.start()
            time.sleep(3)
            if p.is_alive():
                p_flag = True
            else:
                return False
        else:
            if p.is_alive():
                if not self.check_key(post_data):
                    return False
            else:
                return False
        return True

    def do_POST(self):
        content_length = int(self.headers['Content-Length'])
        post_data = self.rfile.read(content_length)
        if self.start(post_data):
            response = {"endpoint_list": [serving_port]}
        else:
            response = {"message": "start serving failed"}
        self.send_response(200)
        self.send_header('Content-type', 'application/json')
        self.end_headers()
H
HexToString 已提交
322
        self.wfile.write(json.dumps(response).encode())
B
barrierye 已提交
323

W
wangjiawei04 已提交
324

M
MRXLT 已提交
325
if __name__ == "__main__":
Z
zhangjun 已提交
326
    args = serve_args()
G
guru4elephant 已提交
327
    if args.name == "None":
Z
zhangjun 已提交
328
        from .web_service import port_is_available
H
HexToString 已提交
329 330 331 332 333 334 335 336 337 338
        if args.use_encryption_model:
            p_flag = False
            p = None
            serving_port = 0
            server = HTTPServer(('localhost', int(args.port)), MainService)
            print(
                'Starting encryption server, waiting for key from client, use <Ctrl-C> to stop'
            )
            server.serve_forever()
        else:
Z
zhangjun 已提交
339
            start_multi_card(args)
G
guru4elephant 已提交
340
    else:
Z
zhangjun 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        from .web_service import WebService
        web_service = WebService(name=args.name)
        web_service.load_model_config(args.model)
        gpu_ids = args.gpu_ids
        if gpu_ids == "":
            if "CUDA_VISIBLE_DEVICES" in os.environ:
                gpu_ids = os.environ["CUDA_VISIBLE_DEVICES"]
        if len(gpu_ids) > 0:
            web_service.set_gpus(gpu_ids)
        web_service.prepare_server(
            workdir=args.workdir,
            port=args.port,
            device=args.device,
            use_lite=args.use_lite,
            use_xpu=args.use_xpu,
            ir_optim=args.ir_optim)
        web_service.run_rpc_service()
M
MRXLT 已提交
358 359 360 361 362

        app_instance = Flask(__name__)

        @app_instance.before_first_request
        def init():
Z
zhangjun 已提交
363
            web_service._launch_web_service()
M
MRXLT 已提交
364

Z
zhangjun 已提交
365
        service_name = "/" + web_service.name + "/prediction"
M
MRXLT 已提交
366 367 368

        @app_instance.route(service_name, methods=["POST"])
        def run():
Z
zhangjun 已提交
369
            return web_service.get_prediction(request)
M
MRXLT 已提交
370 371

        app_instance.run(host="0.0.0.0",
Z
zhangjun 已提交
372
                         port=web_service.port,
M
MRXLT 已提交
373 374
                         threaded=False,
                         processes=4)