export_model.py 2.4 KB
Newer Older
W
w5688414 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from functools import partial

import numpy as np
import paddle
import paddle.nn.functional as F
import paddlenlp as ppnlp
from paddlenlp.data import Stack, Tuple, Pad

from base_model import SemanticIndexBase, SemanticIndexBaseStatic

# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, required=True,
                    default='./checkpoint/model_900/model_state.pdparams', help="The path to model parameters to be loaded.")
parser.add_argument("--output_path", type=str, default='./output',
                    help="The path of model parameter in static graph to be saved.")
args = parser.parse_args()
# yapf: enable

if __name__ == "__main__":
    # If you want to use ernie1.0 model, plesace uncomment the following code
    output_emb_size = 256

    pretrained_model = ppnlp.transformers.ErnieModel.from_pretrained(
        "ernie-1.0")

    tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained('ernie-1.0')
    model = SemanticIndexBaseStatic(
        pretrained_model, output_emb_size=output_emb_size)

    if args.params_path and os.path.isfile(args.params_path):
        state_dict = paddle.load(args.params_path)
        model.set_dict(state_dict)
        print("Loaded parameters from %s" % args.params_path)

    model.eval()

    # Convert to static graph with specific input description
    model = paddle.jit.to_static(
        model,
        input_spec=[
            paddle.static.InputSpec(
                shape=[None, None], dtype="int64"),  # input_ids
            paddle.static.InputSpec(
                shape=[None, None], dtype="int64")  # segment_ids
        ])
    # Save in static graph model.
    save_path = os.path.join(args.output_path, "inference")
    paddle.jit.save(model, save_path)