test_client.py 2.6 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing

G
guru4elephant 已提交
16 17 18
from paddle_serving_client import Client
import sys
import os
M
MRXLT 已提交
19
import time
G
guru4elephant 已提交
20
from paddle_serving_client.metric import auc
W
wangjiawei04 已提交
21
import numpy as np
M
MRXLT 已提交
22 23
import sys

W
wangjiawei04 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
class CriteoReader(object):
    def __init__(self, sparse_feature_dim):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.cont_diff_ = [
            20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.hash_dim_ = sparse_feature_dim
        # here, training data are lines with line_index < train_idx_
        self.train_idx_ = 41256555
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)

    def process_line(self, line):
        features = line.rstrip('\n').split('\t')
        dense_feature = []
        sparse_feature = []
        for idx in self.continuous_range_:
            if features[idx] == '':
                dense_feature.append(0.0)
            else:
                dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
                                     self.cont_diff_[idx - 1])
        for idx in self.categorical_range_:
            sparse_feature.append(
                [hash(str(idx) + features[idx]) % self.hash_dim_])

        return sparse_feature

M
MRXLT 已提交
55 56
py_version = sys.version_info[0]

G
guru4elephant 已提交
57 58 59
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
W
wangjiawei04 已提交
60
reader = CriteoReader(1000001)
G
guru4elephant 已提交
61 62
batch = 1
buf_size = 100
G
guru4elephant 已提交
63 64
label_list = []
prob_list = []
M
MRXLT 已提交
65
start = time.time()
W
wangjiawei04 已提交
66 67 68
f = open(sys.argv[2], 'r')
for ei in range(10):
    data = reader.process_line(f.readline())
G
guru4elephant 已提交
69 70
    feed_dict = {}
    for i in range(1, 27):
W
wangjiawei04 已提交
71 72
        feed_dict["sparse_{}".format(i - 1)] = np.array(data[i-1]).reshape(-1)
        feed_dict["sparse_{}.lod".format(i - 1)] = [0, len(data[i-1])]
G
guru4elephant 已提交
73
    fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
W
wangjiawei04 已提交
74
    print(fetch_map)
M
MRXLT 已提交
75
end = time.time()
W
wangjiawei04 已提交
76
f.close()