text_classification_op.cpp 4.8 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "examples/demo-serving/op/text_classification_op.h"
W
wangguibao 已提交
16
#include <algorithm>
G
guru4elephant 已提交
17 18
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
W
wangguibao 已提交
19 20 21 22 23 24 25 26 27 28 29

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::text_classification::TextResInstance;
using baidu::paddle_serving::predictor::text_classification::Response;
using baidu::paddle_serving::predictor::text_classification::TextReqInstance;
using baidu::paddle_serving::predictor::text_classification::Request;

W
wangguibao 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
int inference_real(TextClassificationOp::TensorVector *in,
                   TextClassificationOp::TensorVector *out,
                   int sample_size) {
  if (predictor::InferManager::instance().infer(
          TEXT_CLASSIFICATION_MODEL_NAME, in, out, sample_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: "
               << TEXT_CLASSIFICATION_MODEL_NAME;
    return -1;
  }

  return 0;
}

int inference_fake(TextClassificationOp::TensorVector *in,
                   TextClassificationOp::TensorVector *out,
                   int sample_size) {
  paddle::PaddleTensor lod_tensor;
  lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
  lod_tensor.data.Resize(sample_size * sizeof(float) * 2);

  float *data_ptr = reinterpret_cast<float *>(lod_tensor.data.data());
  for (int i = 0; i < sample_size; ++i) {
    *(data_ptr + i * 2) = 0.500;
    *(data_ptr + i * 2 + 1) = 0.500;
  }

  lod_tensor.lod.resize(1);
  lod_tensor.lod[0].push_back(0);
  lod_tensor.lod[0].push_back(sample_size);

  lod_tensor.shape.push_back(sample_size);
  lod_tensor.shape.push_back(2);

  out->push_back(lod_tensor);
  return 0;
}

W
wangguibao 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int TextClassificationOp::inference() {
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
  uint32_t sample_size = req->instances_size();
  if (sample_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
    return -1;
  }

  paddle::PaddleTensor lod_tensor;
  lod_tensor.dtype = paddle::PaddleDType::INT64;
  std::vector<std::vector<size_t>> &lod = lod_tensor.lod;
  lod.resize(1);
  lod[0].push_back(0);

  for (uint32_t si = 0; si < sample_size; ++si) {
    const TextReqInstance &req_instance = req->instances(si);
    lod[0].push_back(lod[0].back() + req_instance.ids_size());
  }

  lod_tensor.shape = {lod[0].back(), 1};
  lod_tensor.data.Resize(lod[0].back() * sizeof(int64_t));

  int offset = 0;
  for (uint32_t si = 0; si < sample_size; ++si) {
    // parse text sequence
    int64_t *data_ptr = static_cast<int64_t *>(lod_tensor.data.data()) + offset;
    const TextReqInstance &req_instance = req->instances(si);
    int id_count = req_instance.ids_size();
    memcpy(data_ptr,
           req_instance.ids().data(),
           sizeof(int64_t) * req_instance.ids_size());
    offset += req_instance.ids_size();
  }

  in->push_back(lod_tensor);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
    return -1;
  }

  // call paddle fluid model for inferencing
W
wangguibao 已提交
112

W
wangguibao 已提交
113
  if (inference_real(in, out, sample_size) != 0) {
W
wangguibao 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    return -1;
  }

  if (out->size() != in->size()) {
    LOG(ERROR) << "Output tensor size not equal that of input";
    return -1;
  }

  Response *res = mutable_data<Response>();

  for (size_t i = 0; i < out->size(); ++i) {
    int dim1 = out->at(i).shape[0];
    int dim2 = out->at(i).shape[1];

    if (out->at(i).dtype != paddle::PaddleDType::FLOAT32) {
      LOG(ERROR) << "Expected data type float";
      return -1;
    }

    float *data = static_cast<float *>(out->at(i).data.data());
    for (int j = 0; j < dim1; ++j) {
      TextResInstance *res_instance = res->add_predictions();
      res_instance->set_class_0_prob(data[j * dim2]);
      res_instance->set_class_1_prob(data[j * dim2 + 1]);
    }
  }

  for (size_t i = 0; i < in->size(); ++i) {
    (*in)[i].shape.clear();
  }
  in->clear();
  butil::return_object<TensorVector>(in);

  for (size_t i = 0; i < out->size(); ++i) {
    (*out)[i].shape.clear();
  }
  out->clear();
  butil::return_object<TensorVector>(out);
  return 0;
}

DEFINE_OP(TextClassificationOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu