__init__.py 5.0 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .serving_client import PredictorClient
G
guru4elephant 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from ..proto import sdk_configure_pb2 as sdk
import time

class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
        self.endpoints = []

    def set_server_endpoints(self, endpoints):
        self.endpoints = endpoints

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
        predictor_desc.weighted_random_render_conf.variant_weight_list = "30"

        variant_desc = sdk.VariantConf()
        variant_desc.tag = "var1"
        variant_desc.naming_conf.cluster = "list://%s".format(":".join(self.endpoints))

        predictor_desc.variants.extend([variant_desc])

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
        
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

        return str(self.sdk_desc)

G
guru4elephant 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
        self.feed_shapes_ = []
        self.feed_types_ = []
        self.feed_names_to_idx_ = {}

    def load_client_config(self, path):
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
G
guru4elephant 已提交
76 77
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
G
guru4elephant 已提交
78 79
        return

G
guru4elephant 已提交
80
    def connect(self, endpoints):
G
guru4elephant 已提交
81 82 83
        # check whether current endpoint is available
        # init from client config
        # create predictor here
G
guru4elephant 已提交
84 85 86 87 88 89 90 91 92 93 94 95
        predictor_sdk = SDKConfig()
        predictor_sdk.set_server_endpoints(endpoints)
        sdk_desc = predictor_sdk.gen_desc()
        print(sdk_desc)
        timestamp = time.asctime(time.localtime(time.time()))
        predictor_path = "/tmp/"
        predictor_file = "%s_predictor.conf" % timestamp
        with open(predictor_path + predictor_file, "w") as fout:
            fout.write(sdk_desc)
        self.client_handle_.set_predictor_conf(
            predictor_path, predictor_file)
        self.client_handle_.create_predictor()
G
guru4elephant 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

    def predict(self, feed={}, fetch={}):
        int_slot = []
        float_slot = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
        for key in feed:
            if key not in self.feed_names_:
                continue
            if self.feed_types_[key] == int_type:
                int_feed_names.append(key)
                int_slot.append(feed_map[key])
            elif self.feed_types_[key] == float_type:
                float_feed_names.append(key)
                float_slot.append(feed_map[key])

        for key in fetch:
            if key in self.fetch_names_:
                fetch_names.append(key)

        result = self.client_handle_.predict(
            float_slot, float_feed_names,
            int_slot, int_feed_names,
            fetch_names)
            
        result_map = {}
        for i, name in enumerate(fetch_names):
            result_map[name] = result[i]
            
        return result_map