PIPELINE_SERVING.md 28.1 KB
Newer Older
B
barrierye 已提交
1 2 3 4
# Pipeline Serving

([简体中文](PIPELINE_SERVING_CN.md)|English)

B
barrierye 已提交
5

B
barrierye 已提交
6 7 8 9
Paddle Serving is usually used for the deployment of single model, but the end-to-end deep learning model can not solve all the problems at present. Usually, it is necessary to use multiple deep learning models to solve practical problems.

Paddle Serving provides a user-friendly programming framework for multi-model composite services, Pipeline Serving, which aims to reduce the threshold of programming, improve resource utilization (especially GPU), and improve the prediction efficiency.

10
## ★ Architecture Design
B
barrierye 已提交
11

12
The Server side is built based on <b>RPC Service</b> and <b>graph execution engine</b>. The relationship between them is shown in the following figure.
B
barrierye 已提交
13 14 15 16

<center>
<img src='pipeline_serving-image1.png' height = "250" align="middle"/>
</center>
17

T
TeslaZhao 已提交
18
### 1. RPC Service
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

In order to meet the needs of different users, the RPC service starts one Web server and one RPC server at the same time, and can process 2 types of requests, RESTful API and gRPC.The gPRC gateway receives RESTful API requests and forwards requests to the gRPC server through the reverse proxy server; gRPC requests are received by the gRPC server, so the two types of requests are processed by the gRPC Service in a unified manner to ensure that the processing logic is consistent.

#### <b>1.1 Request and Respose of proto

gRPC service and gRPC gateway service are generated with service.proto.

```proto
message Request {
  repeated string key = 1;  
  repeated string value = 2;
  optional string name = 3;
  optional string method = 4;
  optional int64 logid = 5;
  optional string clientip = 6;
};

message Response {
  optional int32 err_no = 1;
  optional string err_msg = 2;
  repeated string key = 3;
  repeated string value = 4;
};
```

The `key` and `value` in the Request are paired string arrays. The `name` and `method` correspond to the URL of the RESTful API://{ip}:{port}/{name}/{method}.The `logid` and `clientip` are convenient for users to connect service-level requests and customize strategies.

In Response, `err_no` and `err_msg` express the correctness and error information of the processing result, and `key` and `value` are the returned results.

### 2. Graph Execution Engine
B
barrierye 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61

The graph execution engine consists of OPs and Channels, and the connected OPs share one Channel.

- Channel can be understood as a buffer queue. Each OP accepts only one Channel input and multiply Channel outputs (each output is the same); a Channel can contain outputs from multiple OPs, and data from the same Channel can be used as input for multiple OPs.
- Users only need to define relationships between OPs. Graph engine will analyze the dependencies of the entire graph and declaring Channels at the compile time.
- After Request data enters the graph execution engine service, the graph engine will generator an Request ID, and Reponse is returned through corresponding Request ID.
- For cases where large data needs to be transferred between OPs, consider RAM DB external memory for global storage and data transfer by passing index keys in Channel.

<center>
<img src='pipeline_serving-image2.png' height = "300" align="middle"/>
</center>


62
#### <b>2.1 OP Design</b>
B
barrierye 已提交
63 64 65 66

- The default function of a single OP is to access a single Paddle Serving Service based on the input Channel data and put the result into the output Channel.
- OP supports user customization, including preprocess, process, postprocess functions that can be inherited and implemented by the user.
- OP can set the number of concurrencies to increase the number of concurrencies processed.
B
barrierye 已提交
67
- OP can obtain data from multiple different RPC requests for Auto-Batching.
B
barrierye 已提交
68 69
- OP can be started by a thread or process.

70
#### <b>2.2 Channel Design</b>
B
barrierye 已提交
71 72 73 74 75 76 77 78 79 80

- Channel is the data structure for sharing data between OPs, responsible for sharing data or sharing data status information.
- Outputs from multiple OPs can be stored in the same Channel, and data from the same Channel can be used by multiple OPs.
- The following illustration shows the design of Channel in the graph execution engine, using input buffer and output buffer to align data between multiple OP inputs and multiple OP outputs, with a queue in the middle to buffer.

<center>
<img src='pipeline_serving-image3.png' height = "500" align="middle"/>
</center>


81 82 83 84 85 86 87 88 89
#### <b>2.3 client type design</b>

- Prediction type (client_type) of Op has 3 types, brpc, grpc and local_predictor
- brpc: Using bRPC Client to interact with remote Serving by network, performance is better than grpc.
  - grpc: Using gRPC Client to interact with remote Serving by network, cross-platform deployment supported.
  - local_predictor: Load the model and predict in the local service without interacting with the network. Support multi-card deployment, and TensorRT prediction.
  - Selection: 
    - Time cost(lower is better): local_predict < brpc <= grpc
    - Microservice: Split the brpc or grpc model into independent services, simplify development and deployment complexity, and improve resource utilization
B
barriery 已提交
90

91
#### <b>2.4 Extreme Case Consideration</b>
B
barrierye 已提交
92 93 94 95 96 97 98 99 100 101 102 103

- Request timeout

  The entire graph execution engine may time out at every step. The graph execution engine controls the time out by setting `timeout` value. Requests that time out at any step will return a timeout response.

- Channel stores too much data

  Channels may store too much data, causing copy time to be too high. Graph execution engines can store OP calculation results in external memory, such as high-speed memory KV systems.

- Whether input buffers and output buffers in Channel will increase indefinitely

  - It will not increase indefinitely. The input to the entire graph execution engine is placed inside a Channel's internal queue, directly acting as a traffic control buffer queue for the entire service.
B
barrierye 已提交
104 105 106
  - For input buffer, adjust the number of concurrencies of OP1 and OP2 according to the amount of computation, so that the number of input buffers from each input OP is relatively balanced. (The length of the input buffer depends on the speed at which each item in the internal queue is ready)
  - For output buffer, you can use a similar process as input buffer, which adjusts the concurrency of OP3 and OP4 to control the buffer length of output buffer. (The length of the output buffer depends on the speed at which downstream OPs obtain data from the output buffer)
  - The amount of data in the Channel will not exceed `worker_num` of gRPC, that is, it will not exceed the thread pool size.
B
barrierye 已提交
107

108
## ★ Detailed Design
B
barrierye 已提交
109 110 111 112 113 114 115 116 117 118 119

#### 1. General OP Definition

As the basic unit of graph execution engine, the general OP constructor is as follows:

```python
def __init__(name=None,
             input_ops=[],
             server_endpoints=[],
             fetch_list=[],
             client_config=None,
120
             client_type=None,
B
barrierye 已提交
121 122
             concurrency=1,
             timeout=-1,
B
barrierye 已提交
123 124
             retry=1,
             batch_size=1,
125 126
             auto_batching_timeout=None,
             local_service_handler=None)
B
barrierye 已提交
127 128 129 130
```

The meaning of each parameter is as follows:

B
barrierye 已提交
131 132 133 134
|       Parameter       |                           Meaning                            |
| :-------------------: | :----------------------------------------------------------: |
|         name          | (str) String used to identify the OP type, which must be globally unique. |
|       input_ops       |     (list) A list of all previous OPs of the current Op.     |
135
|   server_endpoints    | (list) List of endpoints for remote Paddle Serving Service. If this parameter is not set,it is considered as local_precditor mode, and the configuration is read from local_service_conf |
B
barrierye 已提交
136 137
|      fetch_list       | (list) List of fetch variable names for remote Paddle Serving Service. |
|     client_config     | (str) The path of the client configuration file corresponding to the Paddle Serving Service. |
138
|     client_type       | (str)brpc, grpc or local_predictor. local_predictor does not start the Serving service, in-process prediction|
B
barrierye 已提交
139
|      concurrency      |             (int) The number of concurrent OPs.              |
140
|        timeout        | (int) The timeout time of the process operation, in ms. If the value is less than zero, no timeout is considered. |
B
barrierye 已提交
141 142
|         retry         | (int) Timeout number of retries. When the value is 1, no retries are made. |
|      batch_size       | (int) The expected batch_size of Auto-Batching, since building batches may time out, the actual batch_size may be less than the set value. |
143 144
| auto_batching_timeout | (float) Timeout for building batches of Auto-Batching (the unit is ms). When batch_size> 1, auto_batching_timeout should be set, otherwise the waiting will be blocked when the number of requests is insufficient for batch_size|
| local_service_handler | (object) local predictor handler,assigned by Op init() input parameters or created in Op init()|
B
barrierye 已提交
145

B
barriery 已提交
146

B
barrierye 已提交
147 148
#### 2. General OP Secondary Development Interface

B
barrierye 已提交
149 150 151 152 153 154 155
|              Interface or Variable               |                           Explain                            |
| :----------------------------------------------: | :----------------------------------------------------------: |
|        def preprocess(self, input_dicts)         | Process the data obtained from the channel, and the processed data will be used as the input of the **process** function. (This function handles a **sample**) |
| def process(self, feed_dict_list, typical_logid) | The RPC prediction process is based on the Paddle Serving Client, and the processed data will be used as the input of the **postprocess** function. (This function handles a **batch**) |
|  def postprocess(self, input_dicts, fetch_dict)  | After processing the prediction results, the processed data will be put into the subsequent Channel to be obtained by the subsequent OP. (This function handles a **sample**) |
|                def init_op(self)                 |      Used to load resources (such as word dictionary).       |
|               self.concurrency_idx               | Concurrency index of current process(not thread) (different kinds of OP are calculated separately). |
B
barrierye 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168

In a running cycle, OP will execute three operations: preprocess, process, and postprocess (when the `server_endpoints` parameter is not set, the process operation is not executed). Users can rewrite these three functions. The default implementation is as follows:

```python
def preprocess(self, input_dicts):
  # multiple previous Op
  if len(input_dicts) != 1:
    raise NotImplementedError(
      'this Op has multiple previous inputs. Please override this func.'
    
  (_, input_dict), = input_dicts.items()
  return input_dict

B
barrierye 已提交
169
def process(self, feed_dict_list, typical_logid):
B
barrierye 已提交
170
  err, err_info = ChannelData.check_batch_npdata(feed_dict_list)
B
barrierye 已提交
171 172 173 174
  if err != 0:
    raise NotImplementedError(
      "{} Please override preprocess func.".format(err_info))
  call_result = self.client.predict(
B
barrierye 已提交
175 176 177 178 179
    feed=feed_dict_list, fetch=self._fetch_names, log_id=typical_logid)
  if isinstance(self.client, MultiLangClient):
    if call_result is None or call_result["serving_status_code"] != 0:
      return None
    call_result.pop("serving_status_code")
B
barrierye 已提交
180 181 182 183 184 185
  return call_result

def postprocess(self, input_dicts, fetch_dict):
  return fetch_dict
```

B
barrierye 已提交
186
The parameter of **preprocess** is the data `input_dicts` in the previous Channel. This variable (as a **sample**) is a dictionary with the name of the previous OP as key and the output of the corresponding OP as value.
B
barrierye 已提交
187

B
barrierye 已提交
188
The parameter of **process** is the input variable `fetch_dict_list` (a list of the return value of the preprocess function) of the Paddle Serving Client prediction interface. This variable (as a **batch**) is a list of dictionaries with feed_name as the key and the data in the ndarray format as the value. `typical_logid` is used as the logid that penetrates to PaddleServingService.
B
barrierye 已提交
189

B
barrierye 已提交
190
The parameters of **postprocess** are `input_dicts` and `fetch_dict`. `input_dicts` is consistent with the parameter of preprocess, and `fetch_dict` (as a **sample**) is a sample of the return batch of the process function (if process is not executed, this value is the return value of preprocess).
B
barrierye 已提交
191 192 193 194 195 196 197 198

Users can also rewrite the **init_op** function to load some custom resources (such as word dictionary). The default implementation is as follows:

```python
def init_op(self):
  pass
```

B
barrierye 已提交
199
It should be **noted** that in the threaded version of OP, each OP will only call this function once, so the loaded resources must be thread safe.
B
barrierye 已提交
200

201
#### 3. RequestOp Definition and Secondary Development Interface
B
barrierye 已提交
202 203 204 205 206 207 208

RequestOp is used to process RPC data received by Pipeline Server, and the processed data will be added to the graph execution engine. Its constructor is as follows:

```python
def __init__(self)
```

209
When the default RequestOp cannot meet the parameter parsing requirements, you can customize the request parameter parsing method by rewriting the following two interfaces.
B
barrierye 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

|           Interface or Variable           |                           Explain                            |
| :---------------------------------------: | :----------------------------------------------------------: |
|             def init_op(self)             | It is used to load resources (such as dictionaries), and is consistent with general OP. |
| def unpack_request_package(self, request) |                  Process received RPC data.                  |

The default implementation of **unpack_request_package** is to make the key and value in RPC request into a dictionary:

```python
def unpack_request_package(self, request):
  dictdata = {}
  for idx, key in enumerate(request.key):
    data = request.value[idx]
    try:
      data = eval(data)
    except Exception as e:
      pass
    dictdata[key] = data
  return dictdata
```

The return value is required to be a dictionary type.

233
#### 4. ResponseOp Definition and Secondary Development Interface
B
barrierye 已提交
234 235 236 237 238 239 240 241 242

ResponseOp is used to process the prediction results of the graph execution engine. The processed data will be used as the RPC return value of Pipeline Server. Its constructor is as follows:

```python
def __init__(self, input_ops)
```

`input_ops` is the last OP of graph execution engine. Users can construct different DAGs by setting different `input_ops` without modifying the topology of OPs.

243
When the default ResponseOp cannot meet the requirements of the result return format, you can customize the return package packaging method by rewriting the following two interfaces.
B
barrierye 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

|            Interface or Variable             |                           Explain                            |
| :------------------------------------------: | :----------------------------------------------------------: |
|              def init_op(self)               | It is used to load resources (such as dictionaries), and is consistent with general OP. |
| def pack_response_package(self, channeldata) | Process the prediction results of the graph execution engine as the return of RPC. |

The default implementation of **pack_response_package** is to convert the dictionary of prediction results into key and value in RPC response:

```python
def pack_response_package(self, channeldata):
  resp = pipeline_service_pb2.Response()
  resp.ecode = channeldata.ecode
  if resp.ecode == ChannelDataEcode.OK.value:
    if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
      feed = channeldata.parse()
      np.set_printoptions(threshold=np.nan)
      for name, var in feed.items():
        resp.value.append(var.__repr__())
        resp.key.append(name)
    elif channeldata.datatype == ChannelDataType.DICT.value:
      feed = channeldata.parse()
      for name, var in feed.items():
        if not isinstance(var, str):
          resp.ecode = ChannelDataEcode.TYPE_ERROR.value
          resp.error_info = self._log(
            "fetch var type must be str({}).".format(type(var)))
          break
        resp.value.append(var)
        resp.key.append(name)
    else:
      resp.ecode = ChannelDataEcode.TYPE_ERROR.value
      resp.error_info = self._log(
        "Error type({}) in datatype.".format(channeldata.datatype))
  else:
    resp.error_info = channeldata.error_info
  return resp
```

282
#### 5. PipelineServer Definition
B
barrierye 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295

The definition of PipelineServer is relatively simple, as follows:

```python
server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server(config_yml_path)
server.run_server()
```

Where `response_op` is the responseop mentioned above, PipelineServer will initialize Channels according to the topology relationship of each OP and build the calculation graph. `config_yml_path` is the configuration file of PipelineServer. The example file is as follows:

```yaml
296 297 298 299 300 301 302 303 304 305 306 307
# gRPC port
rpc_port: 18080  

# http port, do not start HTTP service when the value is less or equals 0. The default value is 0.
http_port: 18071 

# gRPC thread pool size (the number of processes in the process version servicer). The default is 1
worker_num: 1  

 # Whether to use process server or not. The default is false
build_dag_each_worker: false 

B
barrierye 已提交
308
dag:
309 310 311 312 313 314 315 316 317 318
    # Whether to use the thread version of OP. The default is true
    is_thread_op: true  

    # The number of times DAG executor retries after failure. The default value is 1, that is, no retrying
    retry: 1 

    # Whether to print the log on the server side. The default is false
    use_profile: false  

    # Monitoring time interval of Tracer (in seconds). Do not start monitoring when the value is less than 1. The default value is -1
B
barrierye 已提交
319
    tracer:
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        interval_s: 600 

op:
    bow:
        # Concurrency, when is_thread_op=True, it's thread concurrency; otherwise, it's process concurrency
        concurrency: 1

        # Client types, brpc, grpc and local_predictor
        client_type: brpc

        # Retry times, no retry by default
        retry: 1

        # Prediction timeout, ms
        timeout: 3000

        # Serving IPs
        server_endpoints: ["127.0.0.1:9393"]

        # Client config of bow model
        client_config: "imdb_bow_client_conf/serving_client_conf.prototxt"

        # Fetch list
        fetch_list: ["prediction"]    
        
        # Batch size, default 1
        batch_size: 1

        # Batch query timeout
        auto_batching_timeout: 2000
```

### 6. Special usages

#### 6.1 <b>Business custom error type</b>

Users can customize the error code according to the business, inherit ProductErrCode, and return it in the return list in Op's preprocess or postprocess. The next stage of processing will skip the post OP processing based on the custom error code.

```python
class ProductErrCode(enum.Enum):
    """
    ProductErrCode is a base class for recording business error code. 
    product developers inherit this class and extend more error codes. 
    """
    pass
```

#### <b>6.2 Skip process stage</b>

The 2rd result of the result list returned by preprocess is `is_skip_process=True`, indicating whether to skip the process stage of the current OP and directly enter the postprocess processing

```python
def preprocess(self, input_dicts, data_id, log_id):
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.
        Args:
            input_dicts: input data to be preprocessed
            data_id: inner unique id
            log_id: global unique id for RTT
        Return:
            input_dict: data for process stage
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
        # multiple previous Op
        if len(input_dicts) != 1:
            _LOGGER.critical(
                self._log(
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
            os._exit(-1)
        (_, input_dict), = input_dicts.items()
        return input_dict, False, None, ""

B
barrierye 已提交
397 398
```

399 400 401 402 403 404 405 406 407
#### <b>6.3 Custom proto Request and Response</b>

When the default proto structure does not meet the business requirements, at the same time, the Request and Response message structures of the proto in the following two files remain the same.

> pipeline/gateway/proto/gateway.proto 

> pipeline/proto/pipeline_service.proto

Recompile Serving Server again.
B
barrierye 已提交
408

409
#### <b>6.4 Custom URL</b>
B
barrierye 已提交
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
The grpc gateway processes post requests. The default `method` is `prediction`, for example: 127.0.0.1:8080/ocr/prediction. Users can customize the name and method, and can seamlessly switch services with existing URLs.

```proto
service PipelineService {
  rpc inference(Request) returns (Response) {
    option (google.api.http) = {
      post : "/{name=*}/{method=*}"
      body : "*"
    };
  }
};
```

***

## ★ Classic examples
B
barrierye 已提交
427 428 429 430 431 432 433 434 435 436

Here, we build a simple imdb model enable example to show how to use Pipeline Serving. The relevant code can be found in the `python/examples/pipeline/imdb_model_ensemble` folder. The Server-side structure in the example is shown in the following figure:



<center>
<img src='pipeline_serving-image4.png' height = "200" align="middle"/>
</center>


437
### 1. Get the model file and start the Paddle Serving Service
B
barrierye 已提交
438 439 440 441 442 443 444 445

```shell
cd python/examples/pipeline/imdb_model_ensemble
sh get_data.sh
python -m paddle_serving_server.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server.serve --model imdb_bow_model --port 9393 &> bow.log &
```

B
barriery 已提交
446 447
PipelineServing also supports local automatic startup of PaddleServingService. Please refer to the example `python/examples/pipeline/ocr`.

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
### 2. Create config.yaml

Because there is a lot of configuration information in config.yaml,, only part of the OP configuration is shown here. For full information, please refer to `python/examples/pipeline/imdb_model_ensemble/config.yaml`

```yaml
op:
    bow:
        # Concurrency, when is_thread_op=True, it's thread concurrency; otherwise, it's process concurrency
        concurrency: 1

        # Client types, brpc, grpc and local_predictor
        client_type: brpc

        # Retry times, no retry by default
        retry: 1

        # Predcition timeout, ms
        timeout: 3000

        # Serving IPs
        server_endpoints: ["127.0.0.1:9393"]

        # Client config of bow model
        client_config: "imdb_bow_client_conf/serving_client_conf.prototxt"

        # Fetch list
        fetch_list: ["prediction"]    
        
        # Batch request size, default 1
        batch_size: 1

        # Batch query timeout
        auto_batching_timeout: 2000
    cnn:
        # Concurrency
        concurrency: 1

        # Client types, brpc, grpc and local_predictor
        client_type: brpc

        # Retry times, no retry by default
        retry: 1

        # Predcition timeout, ms
        timeout: 3000

        # Serving IPs
        server_endpoints: ["127.0.0.1:9292"]

        # Client config of cnn model
        client_config: "imdb_cnn_client_conf/serving_client_conf.prototxt"

        # Fetch list
        fetch_list: ["prediction"]
        
        # Batch request size, default 1
        batch_size: 1

        # Batch query timeout
        auto_batching_timeout: 2000
    combine:
        # Concurrency
        concurrency: 1

        #R etry times, no retry by default
        retry: 1

        # Predcition timeout, ms
        timeout: 3000

        # Batch request size, default 1
        batch_size: 1

        # Batch query timeout, ms
        auto_batching_timeout: 2000

T
TeslaZhao 已提交
524
### 3. Start PipelineServer
B
barrierye 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

Run the following code

```python
from paddle_serving_server.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataEcode
import numpy as np
from paddle_serving_app.reader import IMDBDataset

class ImdbRequestOp(RequestOp):
    def init_op(self):
        self.imdb_dataset = IMDBDataset()
        self.imdb_dataset.load_resource('imdb.vocab')

    def unpack_request_package(self, request):
        dictdata = {}
        for idx, key in enumerate(request.key):
            if key != "words":
                continue
            words = request.value[idx]
            word_ids, _ = self.imdb_dataset.get_words_and_label(words)
            dictdata[key] = np.array(word_ids)
        return dictdata


class CombineOp(Op):
    def preprocess(self, input_data):
        combined_prediction = 0
        for op_name, data in input_data.items():
            _LOGGER.info("{}: {}".format(op_name, data["prediction"]))
            combined_prediction += data["prediction"]
        data = {"prediction": combined_prediction / 2}
        return data


read_op = ImdbRequestOp()
bow_op = Op(name="bow",
            input_ops=[read_op],
            server_endpoints=["127.0.0.1:9393"],
            fetch_list=["prediction"],
            client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
            concurrency=1,
            timeout=-1,
            retry=1)
cnn_op = Op(name="cnn",
            input_ops=[read_op],
            server_endpoints=["127.0.0.1:9292"],
            fetch_list=["prediction"],
            client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
            concurrency=1,
            timeout=-1,
            retry=1)
combine_op = CombineOp(
    name="combine",
    input_ops=[bow_op, cnn_op],
    concurrency=5,
    timeout=-1,
    retry=1)

# use default ResponseOp implementation
response_op = ResponseOp(input_ops=[combine_op])

server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server('config.yml')
server.run_server()
```

T
TeslaZhao 已提交
595
### 4. Perform prediction through PipelineClient
B
barrierye 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

```python
from paddle_serving_client.pipeline import PipelineClient
import numpy as np

client = PipelineClient()
client.connect(['127.0.0.1:18080'])

words = 'i am very sad | 0'

futures = []
for i in range(3):
    futures.append(
        client.predict(
            feed_dict={"words": words},
            fetch=["prediction"],
            asyn=True))

for f in futures:
    res = f.result()
    if res["ecode"] != 0:
        print(res)
        exit(1)
```

T
TeslaZhao 已提交
621 622 623
***

## ★ Performance analysis
B
barrierye 已提交
624 625


T
TeslaZhao 已提交
626
### 1. How to optimize with the timeline tool
B
barrierye 已提交
627 628 629

In order to better optimize the performance, PipelineServing provides a timeline tool to monitor the time of each stage of the whole service.

T
TeslaZhao 已提交
630
### 2. Output profile information on server side
B
barrierye 已提交
631 632 633 634 635 636 637 638

The server is controlled by the `use_profile` field in yaml:

```yaml
dag:
    use_profile: true
```

B
barrierye 已提交
639
After the function is enabled, the server will print the corresponding log information to the standard output in the process of prediction. In order to show the time consumption of each stage more intuitively, Analyst module is provided for further analysis and processing of log files.
B
barrierye 已提交
640

B
barrierye 已提交
641
The output of the server is first saved to a file. Taking `profile.txt` as an example, the script converts the time monitoring information in the log into JSON format and saves it to the `trace` file. The `trace` file can be visualized through the tracing function of Chrome browser.
B
barrierye 已提交
642 643

```shell
B
barrierye 已提交
644 645 646 647 648 649 650 651 652
from paddle_serving_server.pipeline import Analyst
import json
import sys

if __name__ == "__main__":
    log_filename = "profile.txt"
    trace_filename = "trace"
    analyst = Analyst(log_filename)
    analyst.save_trace(trace_filename)
B
barrierye 已提交
653 654
```

B
barrierye 已提交
655
Specific operation: open Chrome browser, input in the address bar `chrome://tracing/` , jump to the tracing page, click the load button, open the saved `trace` file, and then visualize the time information of each stage of the prediction service.
B
barrierye 已提交
656

T
TeslaZhao 已提交
657
### 3. Output profile information on client side
B
barrierye 已提交
658 659 660 661

The profile function can be enabled by setting `profile=True` in the `predict` interface on the client side.

After the function is enabled, the client will print the log information corresponding to the prediction to the standard output during the prediction process, and the subsequent analysis and processing are the same as that of the server.
T
TeslaZhao 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

### 4. Analytical methods
```
cost of one single OP:
op_cost = process(pre + mid + post) 

OP Concurrency: 
op_concurrency = op_cost(s) * qps_expected

Service throughput:
service_throughput = 1 / slowest_op_cost * op_concurrency

Service average cost:
service_avg_cost = ∑op_concurrency in critical Path

Channel accumulations:
channel_acc_size = QPS(down - up) * time

Average cost of batch predictor:
avg_batch_cost = (N * pre + mid + post) / N 
```