local_predict.py 7.9 KB
Newer Older
D
dongdaxiang 已提交
1 2
# -*- coding: utf-8 -*-
"""
D
dongdaxiang 已提交
3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
D
dongdaxiang 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

import os
import google.protobuf.text_format
import numpy as np
import argparse
import paddle.fluid as fluid
from .proto import general_model_config_pb2 as m_config
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import logging

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


W
wangjiawei04 已提交
34
class LocalPredictor(object):
35 36 37 38 39 40
    """
    Prediction in the current process of the local environment, in process
    call, Compared with RPC/HTTP, LocalPredictor has better performance, 
    because of no network and packaging load.
    """

D
dongdaxiang 已提交
41 42 43 44 45 46 47 48 49 50
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.feed_types_ = {}
        self.fetch_types_ = {}
        self.feed_shapes_ = {}
        self.feed_names_to_idx_ = {}
        self.fetch_names_to_idx_ = {}
        self.fetch_names_to_type_ = {}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def load_model_config(self,
                          model_path,
                          use_gpu=False,
                          gpu_id=0,
                          use_profile=False,
                          thread_num=1,
                          mem_optim=True,
                          ir_optim=False,
                          use_trt=False,
                          use_feed_fetch_ops=False):
        """
        Load model config and set the engine config for the paddle predictor
   
        Args:
            model_path: model config path.
            use_gpu: calculating with gpu, False default.
            gpu_id: gpu id, 0 default.
            use_profile: use predictor profiles, False default.
            thread_num: thread nums, default 1. 
            mem_optim: memory optimization, True default.
            ir_optim: open calculation chart optimization, False default.
            use_trt: use nvidia TensorRT optimization, False default
            use_feed_fetch_ops: use feed/fetch ops, False default.
        """
D
dongdaxiang 已提交
75 76 77 78 79 80
        client_config = "{}/serving_server_conf.prototxt".format(model_path)
        model_conf = m_config.GeneralModelConfig()
        f = open(client_config, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        config = AnalysisConfig(model_path)
81 82 83 84 85
        logger.info("load_model_config params: model_path:{}, use_gpu:{},\
            gpu_id:{}, use_profile:{}, thread_num:{}, mem_optim:{}, ir_optim:{},\
            use_trt:{}, use_feed_fetch_ops:{}".format(
            model_path, use_gpu, gpu_id, use_profile, thread_num, mem_optim,
            ir_optim, use_trt, use_feed_fetch_ops))
D
dongdaxiang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.feed_names_to_idx_ = {}
        self.fetch_names_to_idx_ = {}

        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape

        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type

101
        if use_profile:
D
dongdaxiang 已提交
102
            config.enable_profile()
103 104 105 106 107
        if mem_optim:
            config.enable_memory_optim()
        config.switch_ir_optim(ir_optim)
        config.set_cpu_math_library_num_threads(thread_num)
        config.switch_use_feed_fetch_ops(use_feed_fetch_ops)
W
wangjiawei04 已提交
108
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
109 110 111 112 113 114 115 116 117 118 119 120 121

        if not use_gpu:
            config.disable_gpu()
        else:
            config.enable_use_gpu(100, gpu_id)
            if use_trt:
                config.enable_tensorrt_engine(
                    workspace_size=1 << 20,
                    max_batch_size=32,
                    min_subgraph_size=3,
                    use_static=False,
                    use_calib_mode=False)

D
dongdaxiang 已提交
122 123
        self.predictor = create_paddle_predictor(config)

W
wangjiawei04 已提交
124
    def predict(self, feed=None, fetch=None, batch=False, log_id=0):
125 126 127 128 129 130 131 132 133 134 135 136 137
        """
        Predict locally

        Args:
            feed: feed var
            fetch: fetch var
            batch: batch data or not, False default.If batch is False, a new
                   dimension is added to header of the shape[np.newaxis].
            log_id: for logging

        Returns:
            fetch_map: dict 
        """
D
dongdaxiang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
            raise ValueError("Fetch only accepts string and list of string")

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
            raise ValueError("Feed only accepts dict and list of dict")

        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
        int_shape = []
        float_shape = []
        fetch_names = []
        counter = 0
        batch_size = len(feed_batch)

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
                "Fetch names should not be empty or out of saved fetch list.")
            return {}

175 176
        input_names = self.predictor.get_input_names()
        for name in input_names:
M
MRXLT 已提交
177 178 179
            if isinstance(feed[name], list):
                feed[name] = np.array(feed[name]).reshape(self.feed_shapes_[
                    name])
180 181
            if self.feed_types_[name] == 0:
                feed[name] = feed[name].astype("int64")
W
wangjiawei04 已提交
182
            elif self.feed_types_[name] == 1:
183
                feed[name] = feed[name].astype("float32")
W
wangjiawei04 已提交
184 185 186 187
            elif self.feed_types_[name] == 2:
                feed[name] = feed[name].astype("int32")
            else:
                raise ValueError("local predictor receives wrong data type")
188
            input_tensor = self.predictor.get_input_tensor(name)
W
wangjiawei04 已提交
189 190 191 192 193 194
            if "{}.lod".format(name) in feed:
                input_tensor.set_lod([feed["{}.lod".format(name)]])
            if batch == False:
                input_tensor.copy_from_cpu(feed[name][np.newaxis, :])
            else:
                input_tensor.copy_from_cpu(feed[name])
195 196 197 198 199 200 201 202 203 204
        output_tensors = []
        output_names = self.predictor.get_output_names()
        for output_name in output_names:
            output_tensor = self.predictor.get_output_tensor(output_name)
            output_tensors.append(output_tensor)
        outputs = []
        self.predictor.zero_copy_run()
        for output_tensor in output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
D
dongdaxiang 已提交
205
        fetch_map = {}
206 207 208
        for i, name in enumerate(fetch):
            fetch_map[name] = outputs[i]
            if len(output_tensors[i].lod()) > 0:
W
wangjiawei04 已提交
209 210
                fetch_map[name + ".lod"] = np.array(output_tensors[i].lod()[
                    0]).astype('int32')
D
dongdaxiang 已提交
211
        return fetch_map