COMPILE.md 5.7 KB
Newer Older
J
Jiawei Wang 已提交
1
# How to compile PaddleServing
D
Dong Daxiang 已提交
2

J
Jiawei Wang 已提交
3 4 5
([简体中文](./COMPILE_CN.md)|English)

## Compilation environment requirements
B
barrierye 已提交
6

D
Dong Daxiang 已提交
7 8 9 10 11 12
- os: CentOS 6u3
- gcc: 4.8.2及以上
- go: 1.9.2及以上
- git:2.17.1及以上
- cmake:3.2.2及以上
- python:2.7.2及以上
D
Dong Daxiang 已提交
13

J
Jiawei Wang 已提交
14
It is recommended to use Docker to prepare the compilation environment for the Paddle service: [CPU Dockerfile.devel](../tools/Dockerfile.devel), [GPU Dockerfile.gpu.devel](../tools/Dockerfile.gpu.devel)
B
barrierye 已提交
15

J
Jiawei Wang 已提交
16
## Get Code
D
Dong Daxiang 已提交
17 18 19

``` python
git clone https://github.com/PaddlePaddle/Serving
20
cd Serving && git submodule update --init --recursive
D
Dong Daxiang 已提交
21 22
```

J
Jiawei Wang 已提交
23
## PYTHONROOT Setting
D
Dong Daxiang 已提交
24

B
barrierye 已提交
25
```shell
J
Jiawei Wang 已提交
26
# for example, the path of python is /usr/bin/python, you can set /usr as PYTHONROOT
D
Dong Daxiang 已提交
27 28 29
export PYTHONROOT=/usr/
```

J
Jiawei Wang 已提交
30
## Compile Server
B
barrierye 已提交
31

J
Jiawei Wang 已提交
32
### Integrated CPU version paddle inference library
B
barrierye 已提交
33

D
Dong Daxiang 已提交
34
``` shell
B
barrierye 已提交
35 36
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON ..
D
Dong Daxiang 已提交
37 38 39
make -j10
```

J
Jiawei Wang 已提交
40
you can execute `make install` to put targets under directory `./output`, you need to add`-DCMAKE_INSTALL_PREFIX=./output`to specify output path to cmake command shown above.
B
barrierye 已提交
41

J
Jiawei Wang 已提交
42
### Integrated GPU version paddle inference library
B
barrierye 已提交
43

D
Dong Daxiang 已提交
44
``` shell
B
barrierye 已提交
45 46
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DSERVER=ON -DWITH_GPU=ON ..
D
Dong Daxiang 已提交
47 48 49
make -j10
```

J
Jiawei Wang 已提交
50
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
51

J
Jiawei Wang 已提交
52
## Compile Client
D
Dong Daxiang 已提交
53 54

``` shell
B
barrierye 已提交
55 56
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCLIENT=ON ..
D
Dong Daxiang 已提交
57 58
make -j10
```
D
Dong Daxiang 已提交
59

J
Jiawei Wang 已提交
60
execute `make install` to put targets under directory `./output`
B
barrierye 已提交
61

J
Jiawei Wang 已提交
62
## Compile the App
B
barrierye 已提交
63 64 65 66 67 68 69

```bash
mkdir build && cd build
cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PYTHONROOT/lib/libpython2.7.so -DPYTHON_EXECUTABLE=$PYTHONROOT/bin/python -DCMAKE_INSTALL_PREFIX=./output -DAPP=ON ..
make
```

J
Jiawei Wang 已提交
70 71 72
## Install wheel package

Regardless of the client, server or App part, after compiling, install the whl package under `python/dist/`.
B
barrierye 已提交
73

J
Jiawei Wang 已提交
74
## Note
B
barrierye 已提交
75

J
Jiawei Wang 已提交
76
When running the python server, it will check the `SERVING_BIN` environment variable. If you want to use your own compiled binary file, set the environment variable to the path of the corresponding binary file, usually`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`.
B
barrierye 已提交
77

78

J
Jiawei Wang 已提交
79
## CMake Option Description
B
barrierye 已提交
80

J
Jiawei Wang 已提交
81
| Compile Options  |                    Description             | Default |
B
barrierye 已提交
82 83 84 85 86 87 88 89 90 91 92
| :--------------: | :----------------------------------------: | :--: |
|     WITH_AVX     | Compile Paddle Serving with AVX intrinsics | OFF  |
|     WITH_MKL     |  Compile Paddle Serving with MKL support   | OFF  |
|     WITH_GPU     |   Compile Paddle Serving with NVIDIA GPU   | OFF  |
|    CUDNN_ROOT    |    Define CuDNN library and header path    |      |
|      CLIENT      |       Compile Paddle Serving Client        | OFF  |
|      SERVER      |       Compile Paddle Serving Server        | OFF  |
|       APP        |     Compile Paddle Serving App package     | OFF  |
| WITH_ELASTIC_CTR |        Compile ELASITC-CTR solution        | OFF  |
|       PACK       |              Compile for whl               | OFF  |

J
Jiawei Wang 已提交
93
### WITH_GPU Option
B
barrierye 已提交
94

J
Jiawei Wang 已提交
95
Paddle Serving supports prediction on the GPU through the PaddlePaddle inference library. The WITH_GPU option is used to detect basic libraries such as CUDA/CUDNN on the system. If an appropriate version is detected, the GPU Kernel will be compiled when PaddlePaddle is compiled.
B
barrierye 已提交
96

J
Jiawei Wang 已提交
97
To compile the Paddle Serving GPU version on bare metal, you need to install these basic libraries:
B
barrierye 已提交
98 99 100 101 102

- CUDA
- CuDNN
- NCCL2

J
Jiawei Wang 已提交
103 104 105 106
Note here:

1. The basic library versions such as CUDA/CUDNN installed on the system where Serving is compiled, needs to be compatible with the actual GPU device. For example, the Tesla V100 card requires at least CUDA 9.0. If the version of the basic library such as CUDA used during compilation is too low, the generated GPU code is not compatible with the actual hardware device, which will cause the Serving process to fail to start or serious problems such as coredump.
2. Install the CUDA driver compatible with the actual GPU device on the system running Paddle Serving, and install the basic library compatible with the CUDA/CuDNN version used during compilation. If the version of CUDA/CuDNN installed on the system running Paddle Serving is lower than the version used at compile time, it may cause some cuda function call failures and other problems.
B
barrierye 已提交
107 108


J
Jiawei Wang 已提交
109
The following is the base library version matching relationship used by the PaddlePaddle release version for reference:
B
barrierye 已提交
110 111 112 113 114 115

|        |  CUDA   |          CuDNN           | NCCL2  |
| :----: | :-----: | :----------------------: | :----: |
| CUDA 8 | 8.0.61  | CuDNN 7.1.2 for CUDA 8.0 | 2.1.4  |
| CUDA 9 | 9.0.176 | CuDNN 7.3.1 for CUDA 9.0 | 2.2.12 |

J
Jiawei Wang 已提交
116
### How to make the compiler detect the CuDNN library
B
barrierye 已提交
117

J
Jiawei Wang 已提交
118
Download the corresponding CUDNN version from NVIDIA developer official website and decompressing it, add `-DCUDNN_ROOT` to cmake command, to specify the path of CUDNN.
B
barrierye 已提交
119

J
Jiawei Wang 已提交
120
### How to make the compiler detect the nccl library
B
barrierye 已提交
121

J
Jiawei Wang 已提交
122
After downloading the corresponding version of the nccl2 library from the NVIDIA developer official website and decompressing it, add the following environment variables (take nccl2.1.4 as an example):
B
barrierye 已提交
123 124 125 126 127 128

```shell
export C_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=/path/to/nccl2/cuda8/nccl_2.1.4-1+cuda8.0_x86_64/lib/:$LD_LIBRARY_PATH
```