ctr_prediction_op.cpp 7.8 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "demo-serving/op/ctr_prediction_op.h"
#include <algorithm>
W
wangguibao 已提交
17
#include <string>
W
wangguibao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::ctr_prediction::CTRResInstance;
using baidu::paddle_serving::predictor::ctr_prediction::Response;
using baidu::paddle_serving::predictor::ctr_prediction::CTRReqInstance;
using baidu::paddle_serving::predictor::ctr_prediction::Request;

W
wangguibao 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
// Total 26 sparse input + 1 dense input
const int CTR_PREDICTION_INPUT_SLOTS = 27;

// First 26: sparse input
const int CTR_PREDICTION_SPARSE_SLOTS = 26;

// Last 1: dense input
const int CTR_PREDICTION_DENSE_SLOT_ID = 26;
const int CTR_PREDICTION_DENSE_DIM = 13;
const int CTR_PREDICTION_EMBEDDING_SIZE = 10;

#if 1
struct CubeValue {
  int error;
  std::string buff;
};

#endif
void fill_response_with_message(Response *response,
                                int err_code,
                                std::string err_msg) {
  if (response == NULL) {
    LOG(ERROR) << "response is NULL";
    return;
  }

  response->set_err_code(err_code);
  response->set_err_msg(err_msg);
  return;
}
W
wangguibao 已提交
61 62 63 64 65

int CTRPredictionOp::inference() {
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
W
wangguibao 已提交
66 67
  Response *res = mutable_data<Response>();

W
wangguibao 已提交
68 69 70
  uint32_t sample_size = req->instances_size();
  if (sample_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
W
wangguibao 已提交
71
    fill_response_with_message(res, -1, "Sample size invalid");
W
wangguibao 已提交
72 73 74 75
    return -1;
  }

  paddle::PaddleTensor lod_tensors[CTR_PREDICTION_INPUT_SLOTS];
W
wangguibao 已提交
76
  for (int i = 0; i < CTR_PREDICTION_SPARSE_SLOTS; ++i) {
W
wangguibao 已提交
77 78 79 80 81 82
    lod_tensors[i].dtype = paddle::PaddleDType::FLOAT32;
    std::vector<std::vector<size_t>> &lod = lod_tensors[i].lod;
    lod.resize(1);
    lod[0].push_back(0);
  }

W
wangguibao 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  // Query cube API for sparse embeddings
  std::vector<int64_t> keys;
  std::vector<CubeValue> values;

  for (uint32_t si = 0; si < sample_size; ++si) {
    const CTRReqInstance &req_instance = req->instances(si);
    if (req_instance.sparse_ids_size() != CTR_PREDICTION_DENSE_DIM) {
      std::ostringstream iss;
      iss << "dense input size != " << CTR_PREDICTION_DENSE_DIM;
      fill_response_with_message(res, -1, iss.str());
      return -1;
    }

    for (int i = 0; i < req_instance.sparse_ids_size(); ++i) {
      keys.push_back(req_instance.sparse_ids(i));
    }
  }

#if 0
  mCube::CubeAPI* cube = CubeAPI::instance();
  int ret = cube->seek(keys, values);
  if (ret != 0) {
    fill_response_with_message(res, -1, "Query cube for embeddings error");
    LOG(ERROR) << "Query cube for embeddings error";
    return -1;
  }
#else
  float buff[CTR_PREDICTION_EMBEDDING_SIZE] = {
      0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.00};
  for (int i = 0; i < keys.size(); ++i) {
    values[i].error = 0;
    values[i].buff = std::string(reinterpret_cast<char *>(buff), sizeof(buff));
  }
#endif
W
wangguibao 已提交
117

W
wangguibao 已提交
118
  // Sparse embeddings
W
wangguibao 已提交
119 120 121 122 123 124 125 126 127
  for (int i = 0; i < CTR_PREDICTION_SPARSE_SLOTS; ++i) {
    paddle::PaddleTensor lod_tensor = lod_tensors[i];
    std::vector<std::vector<size_t>> &lod = lod_tensor.lod;

    for (uint32_t si = 0; si < sample_size; ++si) {
      const CTRReqInstance &req_instance = req->instances(si);
      lod[0].push_back(lod[0].back() + 1);
    }

W
wangguibao 已提交
128 129 130
    lod_tensor.shape = {lod[0].back(), CTR_PREDICTION_EMBEDDING_SIZE};
    lod_tensor.data.Resize(lod[0].back() * sizeof(float) *
                           CTR_PREDICTION_EMBEDDING_SIZE);
W
wangguibao 已提交
131 132 133

    int offset = 0;
    for (uint32_t si = 0; si < sample_size; ++si) {
W
wangguibao 已提交
134
      float *data_ptr = static_cast<float *>(lod_tensor.data.data()) + offset;
W
wangguibao 已提交
135
      const CTRReqInstance &req_instance = req->instances(si);
W
wangguibao 已提交
136 137 138 139 140 141 142 143 144 145 146 147

      int idx = si * CTR_PREDICTION_SPARSE_SLOTS + i;
      if (values[idx].buff.size() !=
          sizeof(float) * CTR_PREDICTION_EMBEDDING_SIZE) {
        LOG(ERROR) << "Embedding vector size not expected";
        fill_response_with_message(
            res, -1, "Embedding vector size not expected");
        return -1;
      }

      memcpy(data_ptr, values[idx].buff.data(), values[idx].buff.size());
      offset += CTR_PREDICTION_EMBEDDING_SIZE;
W
wangguibao 已提交
148 149 150 151 152
    }

    in->push_back(lod_tensor);
  }

W
wangguibao 已提交
153 154 155
  // Dense features
  paddle::PaddleTensor lod_tensor = lod_tensors[CTR_PREDICTION_DENSE_SLOT_ID];
  lod_tensor.dtype = paddle::PaddleDType::INT64;
W
wangguibao 已提交
156 157 158 159
  std::vector<std::vector<size_t>> &lod = lod_tensor.lod;

  for (uint32_t si = 0; si < sample_size; ++si) {
    const CTRReqInstance &req_instance = req->instances(si);
W
wangguibao 已提交
160 161 162 163 164 165
    if (req_instance.dense_ids_size() != CTR_PREDICTION_DENSE_DIM) {
      std::ostringstream iss;
      iss << "dense input size != " << CTR_PREDICTION_DENSE_DIM;
      fill_response_with_message(res, -1, iss.str());
      return -1;
    }
W
wangguibao 已提交
166 167 168
    lod[0].push_back(lod[0].back() + req_instance.dense_ids_size());
  }

W
wangguibao 已提交
169
  lod_tensor.shape = {lod[0].back(), CTR_PREDICTION_DENSE_DIM};
W
wangguibao 已提交
170 171 172 173 174 175 176 177
  lod_tensor.data.Resize(lod[0].back() * sizeof(int64_t));

  int offset = 0;
  for (uint32_t si = 0; si < sample_size; ++si) {
    int64_t *data_ptr = static_cast<int64_t *>(lod_tensor.data.data()) + offset;
    const CTRReqInstance &req_instance = req->instances(si);
    int id_count = req_instance.dense_ids_size();
    memcpy(data_ptr,
W
wangguibao 已提交
178
           req_instance.dense_ids().data(),
W
wangguibao 已提交
179 180 181 182 183 184 185 186 187
           sizeof(int64_t) * req_instance.dense_ids_size());
    offset += req_instance.dense_ids_size();
  }

  in->push_back(lod_tensor);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
W
wangguibao 已提交
188
    fill_response_with_message(res, -1, "Failed get thread local resource");
W
wangguibao 已提交
189 190 191 192 193 194 195 196
    return -1;
  }

  // call paddle fluid model for inferencing
  if (predictor::InferManager::instance().infer(
          CTR_PREDICTION_MODEL_NAME, in, out, sample_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: "
               << CTR_PREDICTION_MODEL_NAME;
W
wangguibao 已提交
197
    fill_response_with_message(res, -1, "Failed do infer in fluid model");
W
wangguibao 已提交
198 199 200 201 202
    return -1;
  }

  if (out->size() != in->size()) {
    LOG(ERROR) << "Output tensor size not equal that of input";
W
wangguibao 已提交
203
    fill_response_with_message(res, -1, "Output size != input size");
W
wangguibao 已提交
204 205 206 207 208 209 210 211 212
    return -1;
  }

  for (size_t i = 0; i < out->size(); ++i) {
    int dim1 = out->at(i).shape[0];
    int dim2 = out->at(i).shape[1];

    if (out->at(i).dtype != paddle::PaddleDType::FLOAT32) {
      LOG(ERROR) << "Expected data type float";
W
wangguibao 已提交
213
      fill_response_with_message(res, -1, "Expected data type float");
W
wangguibao 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      return -1;
    }

    float *data = static_cast<float *>(out->at(i).data.data());
    for (int j = 0; j < dim1; ++j) {
      CTRResInstance *res_instance = res->add_predictions();
      res_instance->set_prob0(data[j * dim2]);
      res_instance->set_prob1(data[j * dim2 + 1]);
    }
  }

  for (size_t i = 0; i < in->size(); ++i) {
    (*in)[i].shape.clear();
  }
  in->clear();
  butil::return_object<TensorVector>(in);

  for (size_t i = 0; i < out->size(); ++i) {
    (*out)[i].shape.clear();
  }
  out->clear();
  butil::return_object<TensorVector>(out);
W
wangguibao 已提交
236 237 238

  res->set_err_code(0);
  res->set_err_msg(std::string(""));
W
wangguibao 已提交
239 240 241 242 243 244 245 246
  return 0;
}

DEFINE_OP(CTRPredictionOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu