ocr_web_server.py 6.2 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
from paddle_serving_server_gpu.web_service import WebService
import time
import re


class OCRService(WebService):
    def init_det_client(self, det_port, det_client_config):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.det_client = Client()
        self.det_client.load_client_config(det_client_config)
        self.det_client.connect(["127.0.0.1:{}".format(det_port)])

    def preprocess(self, feed=[], fetch=[]):
        img_url = feed[0]["image"]
        #print(feed, img_url)
        read_from_url = URL2Image()
        im = read_from_url(img_url)
        ori_h, ori_w, _ = im.shape
        det_img = self.det_preprocess(im)
        #print("det_img", det_img, det_img.shape)
        det_out = self.det_client.predict(
            feed={"image": det_img}, fetch=["concat_1.tmp_0"])

        #print("det_out", det_out)
        def sorted_boxes(dt_boxes):
            num_boxes = dt_boxes.shape[0]
            sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
            _boxes = list(sorted_boxes)
            for i in range(num_boxes - 1):
                if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
                    (_boxes[i + 1][0][0] < _boxes[i][0][0]):
                    tmp = _boxes[i]
                    _boxes[i] = _boxes[i + 1]
                    _boxes[i + 1] = tmp
            return _boxes

        def get_rotate_crop_image(img, points):
            img_height, img_width = img.shape[0:2]
            left = int(np.min(points[:, 0]))
            right = int(np.max(points[:, 0]))
            top = int(np.min(points[:, 1]))
            bottom = int(np.max(points[:, 1]))
            img_crop = img[top:bottom, left:right, :].copy()
            points[:, 0] = points[:, 0] - left
            points[:, 1] = points[:, 1] - top
            img_crop_width = int(np.linalg.norm(points[0] - points[1]))
            img_crop_height = int(np.linalg.norm(points[0] - points[3]))
            pts_std = np.float32([[0, 0], [img_crop_width, 0], \
                                  [img_crop_width, img_crop_height], [0, img_crop_height]])
            M = cv2.getPerspectiveTransform(points, pts_std)
            dst_img = cv2.warpPerspective(
                img_crop,
                M, (img_crop_width, img_crop_height),
                borderMode=cv2.BORDER_REPLICATE)
            dst_img_height, dst_img_width = dst_img.shape[0:2]
            if dst_img_height * 1.0 / dst_img_width >= 1.5:
                dst_img = np.rot90(dst_img)
            return dst_img

        def resize_norm_img(img, max_wh_ratio):
            import math
            imgC, imgH, imgW = 3, 32, 320
            imgW = int(32 * max_wh_ratio)
            h = img.shape[0]
            w = img.shape[1]
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
            resized_image = resized_image.astype('float32')
            resized_image = resized_image.transpose((2, 0, 1)) / 255
            resized_image -= 0.5
            resized_image /= 0.5
            padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
            padding_im[:, :, 0:resized_w] = resized_image
            return padding_im

        _, new_h, new_w = det_img.shape
        filter_func = FilterBoxes(10, 10)
        post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })
        ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
        dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list])
        dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
        dt_boxes = sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for img in img_list:
            norm_img = resize_norm_img(img, max_wh_ratio)
            feed = {"image": norm_img}
            feed_list.append(feed)
        fetch = ["ctc_greedy_decoder_0.tmp_0"]
        #print("feed_list", feed_list)
        return feed_list, fetch

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
        #print(fetch_map)
        ocr_reader = OCRReader()
        rec_res = ocr_reader.postprocess(fetch_map)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        fetch_map["res"] = res_lst
        del fetch_map["ctc_greedy_decoder_0.tmp_0"]
        del fetch_map["ctc_greedy_decoder_0.tmp_0.lod"]
        return fetch_map


ocr_service = OCRService(name="ocr")
ocr_service.load_model_config("ocr_rec_model")
ocr_service.prepare_server(workdir="workdir", port=9292)
ocr_service.init_det_client(
    det_port=9293,
    det_client_config="ocr_det_client/serving_client_conf.prototxt")
ocr_service.run_rpc_service()
ocr_service.run_web_service()