__init__.py 35.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
M
MRXLT 已提交
15 16 17 18 19 20

import os
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import tarfile
M
MRXLT 已提交
21
import socket
22
import paddle_serving_server_gpu as paddle_serving_server
23
import time
24
from .version import serving_server_version
M
MRXLT 已提交
25
from contextlib import closing
G
guru4elephant 已提交
26
import argparse
B
barrierye 已提交
27
import collections
J
Jiawei Wang 已提交
28
import sys
W
wangjiawei04 已提交
29 30
if sys.platform.startswith('win') is False:
    import fcntl
M
MRXLT 已提交
31
import shutil
B
barrierye 已提交
32 33 34
import numpy as np
import grpc
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
35 36 37
import sys
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
38 39 40 41
from .proto import multi_lang_general_model_service_pb2_grpc
from multiprocessing import Pool, Process
from concurrent import futures

B
barrierye 已提交
42

43 44 45
def serve_args():
    parser = argparse.ArgumentParser("serve")
    parser.add_argument(
M
MRXLT 已提交
46
        "--thread", type=int, default=2, help="Concurrency of server")
47 48 49 50 51 52 53 54 55 56 57
    parser.add_argument(
        "--model", type=str, default="", help="Model for serving")
    parser.add_argument(
        "--port", type=int, default=9292, help="Port of the starting gpu")
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
    parser.add_argument(
        "--device", type=str, default="gpu", help="Type of device")
B
barrierye 已提交
58
    parser.add_argument("--gpu_ids", type=str, default="", help="gpu ids")
59
    parser.add_argument(
60
        "--name", type=str, default="None", help="Default service name")
M
MRXLT 已提交
61
    parser.add_argument(
M
MRXLT 已提交
62
        "--mem_optim_off",
M
MRXLT 已提交
63 64 65
        default=False,
        action="store_true",
        help="Memory optimize")
M
MRXLT 已提交
66
    parser.add_argument(
M
MRXLT 已提交
67
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
M
MRXLT 已提交
68 69 70
    parser.add_argument(
        "--max_body_size",
        type=int,
M
MRXLT 已提交
71
        default=512 * 1024 * 1024,
M
MRXLT 已提交
72
        help="Limit sizes of messages")
H
HexToString 已提交
73 74 75 76 77
    parser.add_argument(
        "--use_encryption_model",
        default=False,
        action="store_true",
        help="Use encryption model")
B
barrierye 已提交
78 79 80 81 82
    parser.add_argument(
        "--use_multilang",
        default=False,
        action="store_true",
        help="Use Multi-language-service")
M
add trt  
MRXLT 已提交
83 84
    parser.add_argument(
        "--use_trt", default=False, action="store_true", help="Use TensorRT")
Z
zhangjun 已提交
85 86 87 88
    parser.add_argument(
        "--use_lite", default=False, action="store_true", help="Use PaddleLite")
    parser.add_argument(
        "--use_xpu", default=False, action="store_true", help="Use XPU")
89 90 91 92 93 94 95 96 97 98
    parser.add_argument(
        "--product_name",
        type=str,
        default=None,
        help="product_name for authentication")
    parser.add_argument(
        "--container_id",
        type=str,
        default=None,
        help="container_id for authentication")
99
    return parser.parse_args()
M
MRXLT 已提交
100

B
barrierye 已提交
101

M
MRXLT 已提交
102 103 104
class OpMaker(object):
    def __init__(self):
        self.op_dict = {
M
MRXLT 已提交
105 106 107 108 109 110
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
111
            "general_dist_kv_infer": "GeneralDistKVInferOp",
M
MRXLT 已提交
112
            "general_dist_kv": "GeneralDistKVOp"
M
MRXLT 已提交
113
        }
B
barrierye 已提交
114
        self.node_name_suffix_ = collections.defaultdict(int)
M
MRXLT 已提交
115

B
barrierye 已提交
116 117 118 119
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
        if node_type not in self.op_dict:
            raise Exception("Op type {} is not supported right now".format(
                node_type))
M
MRXLT 已提交
120
        node = server_sdk.DAGNode()
B
barrierye 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

        node.type = self.op_dict[node_type]
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
M
MRXLT 已提交
143 144 145 146 147 148 149 150


class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
151 152 153 154 155 156 157
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
M
MRXLT 已提交
158
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
159 160 161 162 163 164 165 166
            if len(node.dependencies) == 0:
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
T
TeslaZhao 已提交
167
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'
168
                        .format(node.dependencies[0].name, self.workflow.nodes[
B
barrierye 已提交
169
                            -1].name))
M
MRXLT 已提交
170 171 172 173 174 175 176 177
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


B
barrierye 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


M
MRXLT 已提交
196 197 198 199 200 201 202
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
        self.resource_conf = None
        self.memory_optimization = False
M
MRXLT 已提交
203
        self.ir_optimization = False
M
MRXLT 已提交
204 205 206 207 208 209
        self.model_conf = None
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
210
        self.cube_config_fn = "cube.conf"
M
MRXLT 已提交
211 212
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
213
        self.num_threads = 2
M
MRXLT 已提交
214 215
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
216
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
217 218
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
219
        self.use_local_bin = False
Z
zhangjun 已提交
220
        self.device = "cpu"
M
MRXLT 已提交
221
        self.gpuid = 0
M
add trt  
MRXLT 已提交
222
        self.use_trt = False
Z
zhangjun 已提交
223 224
        self.use_lite = False
        self.use_xpu = False
B
barrierye 已提交
225
        self.model_config_paths = None  # for multi-model in a workflow
226 227
        self.product_name = None
        self.container_id = None
M
MRXLT 已提交
228

B
fix cpu  
barriery 已提交
229 230 231 232
    def get_fetch_list(self):
        fetch_names = [var.alias_name for var in self.model_conf.fetch_var]
        return fetch_names

M
MRXLT 已提交
233 234 235 236 237 238
    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
239 240 241 242 243 244 245 246
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

247 248 249
    def use_encryption_model(self, flag=False):
        self.encryption_model = flag

M
MRXLT 已提交
250 251 252 253 254 255 256 257 258
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
259 260 261
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

M
MRXLT 已提交
262 263 264
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
265 266 267
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

268 269 270 271 272 273 274 275 276 277
    def set_product_name(self, product_name=None):
        if product_name == None:
            raise ValueError("product_name can't be None.")
        self.product_name = product_name

    def set_container_id(self, container_id):
        if container_id == None:
            raise ValueError("container_id can't be None.")
        self.container_id = container_id

M
MRXLT 已提交
278 279 280 281
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
282

M
MRXLT 已提交
283
    def check_cuda(self):
M
MRXLT 已提交
284 285 286
        if os.system("ls /dev/ | grep nvidia > /dev/null") == 0:
            pass
        else:
M
MRXLT 已提交
287
            raise SystemExit(
M
MRXLT 已提交
288
                "GPU not found, please check your environment or use cpu version by \"pip install paddle_serving_server\""
M
MRXLT 已提交
289 290
            )

Z
zhangjun 已提交
291 292 293
    def set_device(self, device="cpu"):
        self.device = device

M
MRXLT 已提交
294 295 296
    def set_gpuid(self, gpuid=0):
        self.gpuid = gpuid

M
bug fix  
MRXLT 已提交
297
    def set_trt(self):
M
add trt  
MRXLT 已提交
298 299
        self.use_trt = True

Z
zhangjun 已提交
300 301 302 303 304 305
    def set_lite(self):
        self.use_lite = True

    def set_xpu(self):
        self.use_xpu = True

H
HexToString 已提交
306
    def _prepare_engine(self, model_config_paths, device, use_encryption_model):
M
MRXLT 已提交
307 308 309
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()

B
barrierye 已提交
310 311 312 313 314 315 316 317 318 319 320 321
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            # engine.reloadable_meta = model_config_path + "/fluid_time_file"
            engine.reloadable_meta = self.workdir + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
322
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
323 324
            engine.static_optimization = False
            engine.force_update_static_cache = False
M
add trt  
MRXLT 已提交
325
            engine.use_trt = self.use_trt
326 327 328
            if os.path.exists('{}/__params__'.format(model_config_path)):
                suffix = ""
            else:
W
wangjiawei04 已提交
329
                suffix = "_DIR"
Z
zhangjun 已提交
330 331 332
            if device == "arm":
                engine.use_lite = self.use_lite
                engine.use_xpu = self.use_xpu
B
barrierye 已提交
333
            if device == "cpu":
W
wangjiawei04 已提交
334
                if use_encryption_model:
H
HexToString 已提交
335 336
                    engine.type = "FLUID_CPU_ANALYSIS_ENCRPT"
                else:
W
wangjiawei04 已提交
337
                    engine.type = "FLUID_CPU_ANALYSIS" + suffix
B
barrierye 已提交
338
            elif device == "gpu":
W
wangjiawei04 已提交
339
                if use_encryption_model:
H
HexToString 已提交
340 341
                    engine.type = "FLUID_GPU_ANALYSIS_ENCRPT"
                else:
W
wangjiawei04 已提交
342
                    engine.type = "FLUID_GPU_ANALYSIS" + suffix
Z
zhangjun 已提交
343
            elif device == "arm":
344
                engine.type = "FLUID_ARM_ANALYSIS" + suffix
B
barrierye 已提交
345
            self.model_toolkit_conf.engines.extend([engine])
M
MRXLT 已提交
346 347 348 349 350 351 352 353 354 355

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

M
MRXLT 已提交
356
    def _prepare_resource(self, workdir, cube_conf):
357
        self.workdir = workdir
M
MRXLT 已提交
358 359 360 361 362
        if self.resource_conf == None:
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
                fout.write(str(self.model_conf))
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
363 364 365 366 367
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
M
MRXLT 已提交
368 369 370 371 372
                        if cube_conf == None:
                            raise ValueError(
                                "Please set the path of cube.conf while use dist_kv op."
                            )
                        shutil.copy(cube_conf, workdir)
M
MRXLT 已提交
373 374 375 376
            self.resource_conf.model_toolkit_path = workdir
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn
377 378 379 380
            if self.product_name != None:
                self.resource_conf.auth_product_name = self.product_name
            if self.container_id != None:
                self.resource_conf.auth_container_id = self.container_id
M
MRXLT 已提交
381 382 383 384 385

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
386 387 388 389
    def load_model_config(self, model_config_paths):
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
390
        # of multiple models are the same.
B
barrierye 已提交
391 392
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
393
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
394
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
395 396 397
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
398
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
399 400
            ]
            engine_name = None
B
barrierye 已提交
401
            for node in self.workflow_conf.workflows[0].nodes:
B
barrierye 已提交
402 403 404 405 406 407 408 409 410
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
411 412 413 414 415 416 417 418
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
M
MRXLT 已提交
419 420
            workflow_oi_config_path = list(self.model_config_paths.items())[0][
                1]
B
barrierye 已提交
421 422 423 424 425
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

M
MRXLT 已提交
426
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
427 428 429
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
M
MRXLT 已提交
430 431 432 433 434 435 436 437
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
        # check config here
        # print config here

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
M
MRXLT 已提交
438 439 440 441 442 443 444

        #acquire lock
        version_file = open("{}/version.py".format(self.module_path), "r")
        import re
        for line in version_file.readlines():
            if re.match("cuda_version", line):
                cuda_version = line.split("\"")[1]
W
wangjiawei04 已提交
445
                if cuda_version == "101" or cuda_version == "102" or cuda_version == "110":
M
bug fix  
MRXLT 已提交
446
                    device_version = "serving-gpu-" + cuda_version + "-"
Z
zhangjun 已提交
447
                elif cuda_version == "arm" or cuda_version == "arm-xpu":
Z
zhangjun 已提交
448
                    device_version = "serving-" + cuda_version + "-"
Z
update  
zhangjun 已提交
449
                else:
Z
zhangjun 已提交
450
                    device_version = "serving-gpu-cuda" + cuda_version + "-"
M
MRXLT 已提交
451

452 453
        folder_name = device_version + serving_server_version
        tar_name = folder_name + ".tar.gz"
M
MRXLT 已提交
454
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
455 456 457 458
        self.server_path = os.path.join(self.module_path, folder_name)

        download_flag = "{}/{}.is_download".format(self.module_path,
                                                   folder_name)
M
MRXLT 已提交
459 460 461

        fcntl.flock(version_file, fcntl.LOCK_EX)

462 463 464 465 466
        if os.path.exists(download_flag):
            os.chdir(self.cur_path)
            self.bin_path = self.server_path + "/serving"
            return

M
MRXLT 已提交
467
        if not os.path.exists(self.server_path):
468 469
            os.system("touch {}/{}.is_download".format(self.module_path,
                                                       folder_name))
M
MRXLT 已提交
470
            print('Frist time run, downloading PaddleServing components ...')
M
MRXLT 已提交
471

M
MRXLT 已提交
472 473 474 475
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
476
                raise SystemExit(
T
TeslaZhao 已提交
477 478
                    'Download failed, please check your network or permission of {}.'
                    .format(self.module_path))
M
MRXLT 已提交
479 480 481 482 483 484 485 486 487
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
488
                    raise SystemExit(
T
TeslaZhao 已提交
489 490
                        'Decompressing failed, please check your permission of {} or disk space left.'
                        .format(self.module_path))
M
MRXLT 已提交
491 492
                finally:
                    os.remove(tar_name)
M
MRXLT 已提交
493
        #release lock
B
barrierye 已提交
494
        version_file.close()
M
MRXLT 已提交
495 496 497
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

M
MRXLT 已提交
498 499 500 501
    def prepare_server(self,
                       workdir=None,
                       port=9292,
                       device="cpu",
W
wangjiawei04 已提交
502
                       use_encryption_model=False,
M
MRXLT 已提交
503
                       cube_conf=None):
M
MRXLT 已提交
504 505 506 507 508 509 510
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
        else:
            os.system("mkdir {}".format(workdir))
        os.system("touch {}/fluid_time_file".format(workdir))

M
MRXLT 已提交
511
        if not self.port_is_available(port):
G
gongweibao 已提交
512
            raise SystemExit("Port {} is already used".format(port))
M
MRXLT 已提交
513

G
guru4elephant 已提交
514
        self.set_port(port)
M
MRXLT 已提交
515
        self._prepare_resource(workdir, cube_conf)
H
HexToString 已提交
516 517
        self._prepare_engine(self.model_config_paths, device,
                             use_encryption_model)
M
MRXLT 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530
        self._prepare_infer_service(port)
        self.workdir = workdir

        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
531
    def port_is_available(self, port):
M
MRXLT 已提交
532 533
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
534
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
535 536 537 538 539
        if result != 0:
            return True
        else:
            return False

M
MRXLT 已提交
540 541 542
    def run_server(self):
        # just run server with system command
        # currently we do not load cube
M
MRXLT 已提交
543
        self.check_local_bin()
M
MRXLT 已提交
544 545
        if not self.use_local_bin:
            self.download_bin()
B
fix bug  
barrierye 已提交
546 547 548
            # wait for other process to download server bin
            while not os.path.exists(self.server_path):
                time.sleep(1)
M
MRXLT 已提交
549 550
        else:
            print("Use local bin : {}".format(self.bin_path))
Z
zhangjun 已提交
551
        #self.check_cuda()
Z
zhangjun 已提交
552 553
        # Todo: merge CPU and GPU code, remove device to model_toolkit
        if self.device == "cpu" or self.device == "arm":
Z
zhangjun 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            command = "{} " \
                      "-enable_model_toolkit " \
                      "-inferservice_path {} " \
                      "-inferservice_file {} " \
                      "-max_concurrency {} " \
                      "-num_threads {} " \
                      "-port {} " \
                      "-reload_interval_s {} " \
                      "-resource_path {} " \
                      "-resource_file {} " \
                      "-workflow_path {} " \
                      "-workflow_file {} " \
                      "-bthread_concurrency {} " \
                      "-max_body_size {} ".format(
                          self.bin_path,
                          self.workdir,
                          self.infer_service_fn,
                          self.max_concurrency,
                          self.num_threads,
                          self.port,
                          self.reload_interval_s,
                          self.workdir,
                          self.resource_fn,
                          self.workdir,
                          self.workflow_fn,
                          self.num_threads,
                          self.max_body_size)
        else:
            command = "{} " \
                      "-enable_model_toolkit " \
                      "-inferservice_path {} " \
                      "-inferservice_file {} " \
                      "-max_concurrency {} " \
                      "-num_threads {} " \
                      "-port {} " \
                      "-reload_interval_s {} " \
                      "-resource_path {} " \
                      "-resource_file {} " \
                      "-workflow_path {} " \
                      "-workflow_file {} " \
                      "-bthread_concurrency {} " \
                      "-gpuid {} " \
                      "-max_body_size {} ".format(
                          self.bin_path,
                          self.workdir,
                          self.infer_service_fn,
                          self.max_concurrency,
                          self.num_threads,
                          self.port,
                          self.reload_interval_s,
                          self.workdir,
                          self.resource_fn,
                          self.workdir,
                          self.workflow_fn,
                          self.num_threads,
                          self.gpuid,
                          self.max_body_size)
M
MRXLT 已提交
611 612
        print("Going to Run Comand")
        print(command)
613

M
MRXLT 已提交
614
        os.system(command)
B
barrierye 已提交
615 616


B
barrierye 已提交
617 618 619
class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
                                     MultiLangGeneralModelServiceServicer):
    def __init__(self, model_config_path, is_multi_model, endpoints):
B
barrierye 已提交
620
        self.is_multi_model_ = is_multi_model
B
barrierye 已提交
621 622 623 624 625 626 627 628
        self.model_config_path_ = model_config_path
        self.endpoints_ = endpoints
        with open(self.model_config_path_) as f:
            self.model_config_str_ = str(f.read())
        self._parse_model_config(self.model_config_str_)
        self._init_bclient(self.model_config_path_, self.endpoints_)

    def _init_bclient(self, model_config_path, endpoints, timeout_ms=None):
B
barrierye 已提交
629 630
        from paddle_serving_client import Client
        self.bclient_ = Client()
B
barrierye 已提交
631 632
        if timeout_ms is not None:
            self.bclient_.set_rpc_timeout_ms(timeout_ms)
B
barrierye 已提交
633
        self.bclient_.load_client_config(model_config_path)
B
barrierye 已提交
634 635
        self.bclient_.connect(endpoints)

B
barrierye 已提交
636
    def _parse_model_config(self, model_config_str):
B
barrierye 已提交
637
        model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
638 639
        model_conf = google.protobuf.text_format.Merge(model_config_str,
                                                       model_conf)
B
barrierye 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

B
barrierye 已提交
664
    def _unpack_inference_request(self, request):
B
barrierye 已提交
665 666
        feed_names = list(request.feed_var_names)
        fetch_names = list(request.fetch_var_names)
B
barrierye 已提交
667
        is_python = request.is_python
B
barriery 已提交
668
        log_id = request.log_id
B
barrierye 已提交
669 670 671 672
        feed_batch = []
        for feed_inst in request.insts:
            feed_dict = {}
            for idx, name in enumerate(feed_names):
B
barrierye 已提交
673
                var = feed_inst.tensor_array[idx]
B
barrierye 已提交
674 675
                v_type = self.feed_types_[name]
                data = None
B
barrierye 已提交
676 677 678 679 680
                if is_python:
                    if v_type == 0:
                        data = np.frombuffer(var.data, dtype="int64")
                    elif v_type == 1:
                        data = np.frombuffer(var.data, dtype="float32")
B
barrierye 已提交
681 682
                    elif v_type == 2:
                        data = np.frombuffer(var.data, dtype="int32")
B
barrierye 已提交
683 684
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
685
                else:
B
barrierye 已提交
686 687 688 689
                    if v_type == 0:  # int64
                        data = np.array(list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(list(var.float_data), dtype="float32")
B
barrierye 已提交
690
                    elif v_type == 2:
691
                        data = np.array(list(var.int_data), dtype="int32")
B
barrierye 已提交
692 693 694
                    else:
                        raise Exception("error type.")
                data.shape = list(feed_inst.tensor_array[idx].shape)
B
barrierye 已提交
695
                feed_dict[name] = data
696 697
                if len(var.lod) > 0:
                    feed_dict["{}.lod".format(name)] = var.lod
B
barrierye 已提交
698
            feed_batch.append(feed_dict)
B
fix bug  
barriery 已提交
699
        return feed_batch, fetch_names, is_python, log_id
B
barrierye 已提交
700

B
barrierye 已提交
701
    def _pack_inference_response(self, ret, fetch_names, is_python):
B
barrierye 已提交
702
        resp = multi_lang_general_model_service_pb2.InferenceResponse()
B
fix bug  
barrierye 已提交
703
        if ret is None:
B
barrierye 已提交
704
            resp.err_code = 1
B
fix bug  
barrierye 已提交
705 706
            return resp
        results, tag = ret
B
barrierye 已提交
707
        resp.tag = tag
B
barrierye 已提交
708
        resp.err_code = 0
B
barrierye 已提交
709

B
barrierye 已提交
710 711 712 713 714 715 716 717 718 719
        if not self.is_multi_model_:
            results = {'general_infer_0': results}
        for model_name, model_result in results.items():
            model_output = multi_lang_general_model_service_pb2.ModelOutput()
            inst = multi_lang_general_model_service_pb2.FetchInst()
            for idx, name in enumerate(fetch_names):
                tensor = multi_lang_general_model_service_pb2.Tensor()
                v_type = self.fetch_types_[name]
                if is_python:
                    tensor.data = model_result[name].tobytes()
B
barrierye 已提交
720
                else:
B
barrierye 已提交
721 722 723 724 725 726
                    if v_type == 0:  # int64
                        tensor.int64_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
                    elif v_type == 1:  # float32
                        tensor.float_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
B
barrierye 已提交
727
                    elif v_type == 2:  # int32
728 729
                        tensor.int_data.extend(model_result[name].reshape(-1)
                                               .tolist())
B
barrierye 已提交
730 731 732
                    else:
                        raise Exception("error type.")
                tensor.shape.extend(list(model_result[name].shape))
M
MRXLT 已提交
733
                if "{}.lod".format(name) in model_result:
B
barrierye 已提交
734 735 736 737 738 739
                    tensor.lod.extend(model_result["{}.lod".format(name)]
                                      .tolist())
                inst.tensor_array.append(tensor)
            model_output.insts.append(inst)
            model_output.engine_name = model_name
            resp.outputs.append(model_output)
B
barrierye 已提交
740 741
        return resp

B
barrierye 已提交
742 743 744 745 746 747 748
    def SetTimeout(self, request, context):
        # This porcess and Inference process cannot be operate at the same time.
        # For performance reasons, do not add thread lock temporarily.
        timeout_ms = request.timeout_ms
        self._init_bclient(self.model_config_path_, self.endpoints_, timeout_ms)
        resp = multi_lang_general_model_service_pb2.SimpleResponse()
        resp.err_code = 0
B
barrierye 已提交
749 750
        return resp

B
barrierye 已提交
751
    def Inference(self, request, context):
752
        feed_batch, fetch_names, is_python, log_id \
B
barriery 已提交
753
                = self._unpack_inference_request(request)
B
fix bug  
barrierye 已提交
754
        ret = self.bclient_.predict(
755
            feed=feed_batch,
756
            fetch=fetch_names,
757
            batch=True,
758 759
            need_variant_tag=True,
            log_id=log_id)
B
barrierye 已提交
760 761 762 763 764 765
        return self._pack_inference_response(ret, fetch_names, is_python)

    def GetClientConfig(self, request, context):
        resp = multi_lang_general_model_service_pb2.GetClientConfigResponse()
        resp.client_config_str = self.model_config_str_
        return resp
B
barrierye 已提交
766 767 768


class MultiLangServer(object):
B
barrierye 已提交
769
    def __init__(self):
B
barrierye 已提交
770
        self.bserver_ = Server()
B
barrierye 已提交
771 772 773 774 775
        self.worker_num_ = 4
        self.body_size_ = 64 * 1024 * 1024
        self.concurrency_ = 100000
        self.is_multi_model_ = False  # for model ensemble

B
barrierye 已提交
776
    def set_max_concurrency(self, concurrency):
B
barrierye 已提交
777
        self.concurrency_ = concurrency
B
barrierye 已提交
778 779
        self.bserver_.set_max_concurrency(concurrency)

780 781 782
    def set_device(self, device="cpu"):
        self.device = device

B
barrierye 已提交
783
    def set_num_threads(self, threads):
B
barrierye 已提交
784
        self.worker_num_ = threads
B
barrierye 已提交
785 786 787 788
        self.bserver_.set_num_threads(threads)

    def set_max_body_size(self, body_size):
        self.bserver_.set_max_body_size(body_size)
B
barrierye 已提交
789 790 791 792 793 794
        if body_size >= self.body_size_:
            self.body_size_ = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )
B
barrierye 已提交
795

796 797 798
    def use_encryption_model(self, flag=False):
        self.encryption_model = flag

B
barrierye 已提交
799 800 801 802 803
    def set_port(self, port):
        self.gport_ = port

    def set_reload_interval(self, interval):
        self.bserver_.set_reload_interval(interval)
B
barrierye 已提交
804 805 806 807

    def set_op_sequence(self, op_seq):
        self.bserver_.set_op_sequence(op_seq)

B
barrierye 已提交
808 809 810 811 812 813 814 815
    def set_op_graph(self, op_graph):
        self.bserver_.set_op_graph(op_graph)

    def set_memory_optimize(self, flag=False):
        self.bserver_.set_memory_optimize(flag)

    def set_ir_optimize(self, flag=False):
        self.bserver_.set_ir_optimize(flag)
B
barrierye 已提交
816

B
barrierye 已提交
817 818 819
    def set_gpuid(self, gpuid=0):
        self.bserver_.set_gpuid(gpuid)

B
barrierye 已提交
820 821 822 823 824 825 826 827 828 829 830
    def load_model_config(self, server_config_paths, client_config_path=None):
        self.bserver_.load_model_config(server_config_paths)
        if client_config_path is None:
            if isinstance(server_config_paths, dict):
                self.is_multi_model_ = True
                client_config_path = '{}/serving_server_conf.prototxt'.format(
                    list(server_config_paths.items())[0][1])
            else:
                client_config_path = '{}/serving_server_conf.prototxt'.format(
                    server_config_paths)
        self.bclient_config_path_ = client_config_path
B
barrierye 已提交
831

M
MRXLT 已提交
832 833 834 835 836
    def prepare_server(self,
                       workdir=None,
                       port=9292,
                       device="cpu",
                       cube_conf=None):
B
barrierye 已提交
837 838
        if not self._port_is_available(port):
            raise SystemExit("Prot {} is already used".format(port))
B
barrierye 已提交
839 840 841 842 843 844 845 846
        default_port = 12000
        self.port_list_ = []
        for i in range(1000):
            if default_port + i != port and self._port_is_available(default_port
                                                                    + i):
                self.port_list_.append(default_port + i)
                break
        self.bserver_.prepare_server(
M
MRXLT 已提交
847 848 849 850
            workdir=workdir,
            port=self.port_list_[0],
            device=device,
            cube_conf=cube_conf)
B
barrierye 已提交
851
        self.set_port(port)
B
barrierye 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865

    def _launch_brpc_service(self, bserver):
        bserver.run_server()

    def _port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        return result != 0

    def run_server(self):
        p_bserver = Process(
            target=self._launch_brpc_service, args=(self.bserver_, ))
        p_bserver.start()
B
barrierye 已提交
866 867
        options = [('grpc.max_send_message_length', self.body_size_),
                   ('grpc.max_receive_message_length', self.body_size_)]
B
barrierye 已提交
868
        server = grpc.server(
B
barrierye 已提交
869 870 871
            futures.ThreadPoolExecutor(max_workers=self.worker_num_),
            options=options,
            maximum_concurrent_rpcs=self.concurrency_)
B
barrierye 已提交
872
        multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
B
barrierye 已提交
873
            MultiLangServerServiceServicer(
B
barrierye 已提交
874
                self.bclient_config_path_, self.is_multi_model_,
B
barrierye 已提交
875
                ["0.0.0.0:{}".format(self.port_list_[0])]), server)
B
barrierye 已提交
876 877 878 879
        server.add_insecure_port('[::]:{}'.format(self.gport_))
        server.start()
        p_bserver.join()
        server.wait_for_termination()