general_model.cpp 18.1 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;
H
HexToString 已提交
31
enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32, P_STRING };
32
std::once_flag gflags_init_flag;
M
MRXLT 已提交
33
namespace py = pybind11;
34

G
guru4elephant 已提交
35 36 37
namespace baidu {
namespace paddle_serving {
namespace general_model {
38
using configure::GeneralModelConfig;
G
guru4elephant 已提交
39

40 41
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
42
#ifndef BCLOUD
M
MRXLT 已提交
43
    FLAGS_logtostderr = true;
44
#endif
M
MRXLT 已提交
45 46 47 48 49 50 51 52 53 54 55 56
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
57 58
}

H
HexToString 已提交
59
int PredictorClient::init(const std::vector<std::string> &conf_file) {
60 61
  try {
    GeneralModelConfig model_config;
H
HexToString 已提交
62
    if (configure::read_proto_conf(conf_file[0].c_str(), &model_config) != 0) {
63
      LOG(ERROR) << "Failed to load general model config"
H
HexToString 已提交
64
                 << ", file path: " << conf_file[0];
65 66
      return -1;
    }
H
HexToString 已提交
67

68 69 70 71
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
H
HexToString 已提交
72
    VLOG(2) << "feed var num: " << feed_var_num;
73 74
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
75 76
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
77
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
78 79
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
80 81
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
82
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
83 84
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
85 86 87
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
88
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
89 90
    }

H
HexToString 已提交
91
    if (conf_file.size() > 1) {
H
HexToString 已提交
92 93 94 95 96 97 98 99 100
      model_config.Clear();
      if (configure::read_proto_conf(conf_file[conf_file.size()-1].c_str(), &model_config) != 0) {
        LOG(ERROR) << "Failed to load general model config"
                  << ", file path: " << conf_file[conf_file.size()-1];
        return -1;
      }
    }
    int fetch_var_num = model_config.fetch_var_size();
    VLOG(2) << "fetch_var_num: " << fetch_var_num;
101 102
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
103 104
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
105 106
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
107 108
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
109
    }
M
MRXLT 已提交
110
  } catch (std::exception &e) {
111 112
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
113
  }
114
  return 0;
G
guru4elephant 已提交
115 116
}

M
MRXLT 已提交
117 118
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
119 120 121
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
122 123 124
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
125
  return 0;
126 127
}

M
MRXLT 已提交
128
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
129 130 131 132
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
133
  // _api.thrd_initialize();
B
barrierye 已提交
134
  return 0;
G
guru4elephant 已提交
135 136
}

G
guru4elephant 已提交
137
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
138 139
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
140 141 142 143
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
144
  // _api.thrd_initialize();
B
barrierye 已提交
145
  return 0;
G
guru4elephant 已提交
146 147
}

M
MRXLT 已提交
148 149 150 151
int PredictorClient::numpy_predict(
    const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
W
wangjiawei04 已提交
152
    const std::vector<std::vector<int>> &float_lod_slot_batch,
M
MRXLT 已提交
153 154 155
    const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
W
wangjiawei04 已提交
156
    const std::vector<std::vector<int>> &int_lod_slot_batch,
H
HexToString 已提交
157 158 159 160
    const std::vector<std::vector<std::string>>& string_feed_batch,
    const std::vector<std::string>& string_feed_name,
    const std::vector<std::vector<int>>& string_shape,
    const std::vector<std::vector<int>>& string_lod_slot_batch,
M
MRXLT 已提交
161 162
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
163 164
    const int &pid,
    const uint64_t log_id) {
H
HexToString 已提交
165 166
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
  batch_size = batch_size > string_feed_batch.size() ? batch_size : string_feed_batch.size();
D
dongdaxiang 已提交
167
  VLOG(2) << "batch size: " << batch_size;
M
MRXLT 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  int fetch_name_num = fetch_name.size();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
H
HexToString 已提交
181
  VLOG(2) << "string feed name size: " << string_feed_name.size();
M
MRXLT 已提交
182 183
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
184
  req.set_log_id(log_id);
M
MRXLT 已提交
185 186 187 188
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

H
HexToString 已提交
189 190
  int vec_idx = 0;

M
MRXLT 已提交
191 192 193 194 195 196
  for (int bi = 0; bi < batch_size; bi++) {
    VLOG(2) << "prepare batch " << bi;
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
    std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
H
HexToString 已提交
197
    std::vector<std::string> string_feed = string_feed_batch[bi];
M
MRXLT 已提交
198 199 200 201 202 203 204 205
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

H
HexToString 已提交
206 207 208 209 210
    for (auto &name : string_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    VLOG(2) << "batch [" << bi << "] " << "prepared";
M
MRXLT 已提交
211

H
HexToString 已提交
212
    vec_idx = 0;
M
MRXLT 已提交
213 214
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
H
HexToString 已提交
215 216 217 218
      if (idx >= tensor_vec.size()) {
        LOG(ERROR) << "idx > tensor_vec.size()";
        return -1;
      }
M
MRXLT 已提交
219 220 221 222 223 224
      Tensor *tensor = tensor_vec[idx];
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
      }
W
wangjiawei04 已提交
225 226 227
      for (uint32_t j = 0; j < float_lod_slot_batch[vec_idx].size(); ++j) {
        tensor->add_lod(float_lod_slot_batch[vec_idx][j]);
      }
H
HexToString 已提交
228
      tensor->set_elem_type(P_FLOAT32);
M
MRXLT 已提交
229 230
      const int float_shape_size = float_shape[vec_idx].size();
      switch (float_shape_size) {
M
bug fix  
MRXLT 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243
        case 4: {
          auto float_array = float_feed[vec_idx].unchecked<4>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                for (ssize_t l = 0; l < float_array.shape(3); l++) {
                  tensor->add_float_data(float_array(i, j, k, l));
                }
              }
            }
          }
          break;
        }
M
MRXLT 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        case 3: {
          auto float_array = float_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                tensor->add_float_data(float_array(i, j, k));
              }
            }
          }
          break;
        }
        case 2: {
          auto float_array = float_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              tensor->add_float_data(float_array(i, j));
            }
          }
          break;
        }
M
bug fix  
MRXLT 已提交
264 265 266 267 268 269 270
        case 1: {
          auto float_array = float_feed[vec_idx].unchecked<1>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            tensor->add_float_data(float_array(i));
          }
          break;
        }
M
MRXLT 已提交
271 272 273
      }
      vec_idx++;
    }
H
HexToString 已提交
274
    
M
MRXLT 已提交
275 276 277 278 279 280
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
H
HexToString 已提交
281 282 283 284
      if (idx >= tensor_vec.size()) {
        LOG(ERROR) << "idx > tensor_vec.size()";
        return -1;
      }
M
MRXLT 已提交
285
      Tensor *tensor = tensor_vec[idx];
M
MRXLT 已提交
286

M
MRXLT 已提交
287 288 289
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
      }
W
wangjiawei04 已提交
290 291 292
      for (uint32_t j = 0; j < int_lod_slot_batch[vec_idx].size(); ++j) {
        tensor->add_lod(int_lod_slot_batch[vec_idx][j]);
      }
M
MRXLT 已提交
293 294
      tensor->set_elem_type(_type[idx]);

H
HexToString 已提交
295
      if (_type[idx] == P_INT64) {
M
MRXLT 已提交
296 297 298 299 300 301
        VLOG(2) << "prepare int feed " << name << " shape size "
                << int_shape[vec_idx].size();
      } else {
        VLOG(2) << "prepare int32 feed " << name << " shape size "
                << int_shape[vec_idx].size();
      }
M
MRXLT 已提交
302 303 304 305

      const int int_shape_size = int_shape[vec_idx].size();
      switch (int_shape_size) {
        case 4: {
M
bug fix  
MRXLT 已提交
306
          auto int_array = int_feed[vec_idx].unchecked<4>();
M
MRXLT 已提交
307 308 309 310
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
                for (ssize_t l = 0; k < int_array.shape(3); l++) {
H
HexToString 已提交
311
                  if (_type[idx] == P_INT64) {
M
MRXLT 已提交
312 313 314 315
                    tensor->add_int64_data(int_array(i, j, k, l));
                  } else {
                    tensor->add_int_data(int_array(i, j, k, l));
                  }
M
MRXLT 已提交
316 317 318 319 320 321 322 323 324 325 326
                }
              }
            }
          }
          break;
        }
        case 3: {
          auto int_array = int_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
H
HexToString 已提交
327
                if (_type[idx] == P_INT64) {
M
MRXLT 已提交
328 329 330 331
                  tensor->add_int64_data(int_array(i, j, k));
                } else {
                  tensor->add_int_data(int_array(i, j, k));
                }
M
MRXLT 已提交
332 333 334 335 336 337 338 339 340
              }
            }
          }
          break;
        }
        case 2: {
          auto int_array = int_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
H
HexToString 已提交
341
              if (_type[idx] == P_INT64) {
M
MRXLT 已提交
342 343 344 345
                tensor->add_int64_data(int_array(i, j));
              } else {
                tensor->add_int_data(int_array(i, j));
              }
M
MRXLT 已提交
346 347 348 349 350
            }
          }
          break;
        }
        case 1: {
M
bug fix  
MRXLT 已提交
351
          auto int_array = int_feed[vec_idx].unchecked<1>();
M
MRXLT 已提交
352
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
H
HexToString 已提交
353
            if (_type[idx] == P_INT64) {
M
MRXLT 已提交
354 355 356 357
              tensor->add_int64_data(int_array(i));
            } else {
              tensor->add_int_data(int_array(i));
            }
M
MRXLT 已提交
358 359 360 361 362 363 364 365 366
          }
          break;
        }
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "int feed value prepared";
H
HexToString 已提交
367 368 369 370

    vec_idx = 0;
    for (auto &name : string_feed_name) {
      int idx = _feed_name_to_idx[name];
H
HexToString 已提交
371 372 373 374
      if (idx >= tensor_vec.size()) {
        LOG(ERROR) << "idx > tensor_vec.size()";
        return -1;
      }
H
HexToString 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387
      Tensor *tensor = tensor_vec[idx];

      for (uint32_t j = 0; j < string_shape[vec_idx].size(); ++j) {
        tensor->add_shape(string_shape[vec_idx][j]);
      }
      for (uint32_t j = 0; j < string_lod_slot_batch[vec_idx].size(); ++j) {
        tensor->add_lod(string_lod_slot_batch[vec_idx][j]);
      }
      tensor->set_elem_type(P_STRING);

      const int string_shape_size = string_shape[vec_idx].size();
      //string_shape[vec_idx] = [1];cause numpy has no datatype of string.
      //we pass string via vector<vector<string> >.
H
HexToString 已提交
388
      if (string_shape_size != 1) {
H
HexToString 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
        LOG(ERROR) << "string_shape_size should be 1-D, but received is : " << string_shape_size;
        return -1;
      }
      switch (string_shape_size) {
        case 1: {
          tensor->add_data(string_feed[vec_idx]);
          break;
        }
      }
      vec_idx++;
    }
    
    VLOG(2) << "batch [" << bi << "] "
            << "string feed value prepared";
M
MRXLT 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
  }

  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
431 432 433
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
434 435
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
436

M
MRXLT 已提交
437
      int idx = 0;
M
MRXLT 已提交
438
      for (auto &name : fetch_name) {
B
barrierye 已提交
439
        // int idx = _fetch_name_to_idx[name];
B
barrierye 已提交
440
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
441 442
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
443 444 445 446 447 448 449 450 451 452 453
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
454
        }
B
barrierye 已提交
455
        idx += 1;
B
barrierye 已提交
456
      }
457

M
MRXLT 已提交
458 459
      idx = 0;

B
barrierye 已提交
460
      for (auto &name : fetch_name) {
B
barrierye 已提交
461
        // int idx = _fetch_name_to_idx[name];
H
HexToString 已提交
462
        if (_fetch_name_to_type[name] == P_INT64) {
M
MRXLT 已提交
463
          VLOG(2) << "ferch var " << name << "type int64";
B
barrierye 已提交
464
          int size = output.insts(0).tensor_array(idx).int64_data_size();
W
WangXi 已提交
465 466 467
          model._int64_value_map[name] = std::vector<int64_t>(
              output.insts(0).tensor_array(idx).int64_data().begin(),
              output.insts(0).tensor_array(idx).int64_data().begin() + size);
H
HexToString 已提交
468
        } else if (_fetch_name_to_type[name] == P_FLOAT32) {
B
barrierye 已提交
469
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
470
          int size = output.insts(0).tensor_array(idx).float_data_size();
W
WangXi 已提交
471 472 473
          model._float_value_map[name] = std::vector<float>(
              output.insts(0).tensor_array(idx).float_data().begin(),
              output.insts(0).tensor_array(idx).float_data().begin() + size);
H
HexToString 已提交
474
        } else if (_fetch_name_to_type[name] == P_INT32) {
M
MRXLT 已提交
475 476
          VLOG(2) << "fetch var " << name << "type int32";
          int size = output.insts(0).tensor_array(idx).int_data_size();
M
MRXLT 已提交
477 478 479
          model._int32_value_map[name] = std::vector<int32_t>(
              output.insts(0).tensor_array(idx).int_data().begin(),
              output.insts(0).tensor_array(idx).int_data().begin() + size);
M
MRXLT 已提交
480
        }
B
barrierye 已提交
481
        idx += 1;
M
MRXLT 已提交
482
      }
B
barrierye 已提交
483
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
484
    }
485
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
486 487
  }

M
MRXLT 已提交
488 489 490
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
491
        << "pid:" << pid << "\t"
M
MRXLT 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
509 510

  _api.thrd_clear();
M
MRXLT 已提交
511
  return 0;
M
MRXLT 已提交
512
}
G
guru4elephant 已提交
513 514 515
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu