ABTEST_IN_PADDLE_SERVING.md 4.9 KB
Newer Older
B
add doc  
barrierye 已提交
1 2
# ABTEST in Paddle Serving

J
Jiawei Wang 已提交
3 4
([简体中文](./ABTEST_IN_PADDLE_SERVING_CN.md)|English)

B
add doc  
barrierye 已提交
5 6
This document will use an example of text classification task based on IMDB dataset to show how to build a A/B Test framework using Paddle Serving. The structure relationship between the client and servers in the example is shown in the figure below.

B
barrierye 已提交
7
<img src="abtest.png" style="zoom:33%;" />
B
add doc  
barrierye 已提交
8 9 10 11 12 13 14 15 16 17 18

Note that:  A/B Test is only applicable to RPC mode, not web mode.

### Download Data and Models

```shell
cd Serving/python/examples/imdb
sh get_data.sh
```

### Processing Data
T
fix  
Thomas Young 已提交
19 20 21 22 23 24
Data processing needs to use the relevant library, please use pip to install
``` shell
pip install paddlepaddle
pip install paddle-serving-app
pip install Shapely
````
B
add doc  
barrierye 已提交
25

T
fix  
Thomas Young 已提交
26
You can directly run the following command to process the data.
B
add doc  
barrierye 已提交
27

T
fix  
Thomas Young 已提交
28 29 30
[python abtest_get_data.py](../python/examples/imdb/abtest_get_data.py)

The Python code in the file will process the data `test_data/part-0` and write to the `processed.data` file.
B
add doc  
barrierye 已提交
31 32 33

### Start Server

T
fix  
Thomas Young 已提交
34
Here, we [use docker](RUN_IN_DOCKER.md) to start the server-side service. 
B
add doc  
barrierye 已提交
35 36 37 38

First, start the BOW server, which enables the `8000` port:

``` shell
T
fix  
Thomas Young 已提交
39 40 41 42
docker run -dit -v $PWD/imdb_bow_model:/model -p 8000:8000 --name bow-server hub.baidubce.com/paddlepaddle/serving:latest /bin/bash
docker exec -it bow-server /bin/bash
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple
B
add doc  
barrierye 已提交
43 44 45 46 47 48 49
python -m paddle_serving_server.serve --model model --port 8000 >std.log 2>err.log &
exit
```

Similarly, start the LSTM server, which enables the `9000` port:

```bash
T
fix  
Thomas Young 已提交
50 51 52 53
docker run -dit -v $PWD/imdb_lstm_model:/model -p 9000:9000 --name lstm-server hub.baidubce.com/paddlepaddle/serving:latest /bin/bash
docker exec -it lstm-server /bin/bash
pip install paddle-serving-server -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddle-serving-client -i https://pypi.tuna.tsinghua.edu.cn/simple
B
add doc  
barrierye 已提交
54 55 56 57 58 59
python -m paddle_serving_server.serve --model model --port 9000 >std.log 2>err.log &
exit
```

### Start Client

T
fix  
Thomas Young 已提交
60
In order to simulate abtest condition, you can run the following Python code on the host to start the client, but you need to ensure that the host has the relevant environment, you can also run in the docker environment.
B
add doc  
barrierye 已提交
61

T
fix  
Thomas Young 已提交
62 63 64 65 66 67 68
Before running, use `pip install paddle-serving-client` to install the paddle-serving-client package.

You can directly use the following command to make abtest prediction.

[python abtest_client.py](../python/examples/imdb/abtest_client.py)

[//file]:#abtest_client.py
J
Jiawei Wang 已提交
69
``` python
B
add doc  
barrierye 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
from paddle_serving_client import Client

client = Client()
client.load_client_config('imdb_bow_client_conf/serving_client_conf.prototxt')
client.add_variant("bow", ["127.0.0.1:8000"], 10)
client.add_variant("lstm", ["127.0.0.1:9000"], 90)
client.connect()

with open('processed.data') as f:
    cnt = {"bow": {'acc': 0, 'total': 0}, "lstm": {'acc': 0, 'total': 0}}
    for line in f:
        word_ids, label = line.split(';')
        word_ids = [int(x) for x in word_ids.split(',')]
        feed = {"words": word_ids}
        fetch = ["acc", "cost", "prediction"]
        [fetch_map, tag] = client.predict(feed=feed, fetch=fetch, need_variant_tag=True)
M
MRXLT 已提交
86
        if (float(fetch_map["prediction"][0][1]) - 0.5) * (float(label[0]) - 0.5) > 0:
B
add doc  
barrierye 已提交
87 88 89 90 91 92 93 94 95
            cnt[tag]['acc'] += 1
        cnt[tag]['total'] += 1

    for tag, data in cnt.items():
        print('[{}](total: {}) acc: {}'.format(tag, data['total'], float(data['acc']) / float(data['total'])))
```

In the code, the function `client.add_variant(tag, clusters, variant_weight)` is to add a variant with label `tag` and flow weight `variant_weight`. In this example, a BOW variant with label of `bow` and flow weight of `10`, and an LSTM variant with label of `lstm` and a flow weight of `90` are added. The flow on the client side will be distributed to two variants according to the ratio of `10:90`.

M
fix doc  
MRXLT 已提交
96
When making prediction on the client side, if the parameter `need_variant_tag=True` is specified, the response will contain the variant tag corresponding to the distribution flow.
B
add doc  
barrierye 已提交
97 98

### Expected Results
T
fix  
Thomas Young 已提交
99
Due to different network conditions, the results of each prediction may be slightly different.
B
add doc  
barrierye 已提交
100 101 102 103
``` python
[lstm](total: 1867) acc: 0.490091055169
[bow](total: 217) acc: 0.73732718894
```
J
Jiawei Wang 已提交
104 105

<!--
W
wangjiawei04 已提交
106 107
cp ../Serving/python/examples/imdb/get_data.sh .
cp ../Serving/python/examples/imdb/imdb_reader.py .
J
Jiawei Wang 已提交
108 109 110 111 112
pip install -U paddle_serving_server
pip install -U paddle_serving_client
pip install -U paddlepaddle
sh get_data.sh
python process.py
W
wangjiawei04 已提交
113 114 115 116
python -m paddle_serving_server.serve --model imdb_bow_model --port 8000 --workdir workdir1 &
sleep 5
python -m paddle_serving_server.serve --model imdb_lstm_model --port 9000  --workdir workdir2 &
sleep 5
J
Jiawei Wang 已提交
117 118 119 120 121 122
python ab_client.py >log.txt
if [[ $? -eq 0 ]]; then
    echo "test success"
else
    echo "test fail"
fi
J
Jiawei Wang 已提交
123
ps -ef | grep "paddle_serving_server" | grep -v grep | awk '{print $2}' | xargs kill
J
Jiawei Wang 已提交
124
-->