operator.py 60.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
B
barriery 已提交
15
from time import time as _time
B
barriery 已提交
16
import time
17 18 19 20 21 22
import threading
import multiprocessing
from paddle_serving_client import MultiLangClient, Client
from concurrent import futures
import logging
import func_timeout
23
import os
B
barrierye 已提交
24
import sys
25
import collections
B
barrierye 已提交
26
import numpy as np
T
TeslaZhao 已提交
27
import json
B
barrierye 已提交
28
from numpy import *
B
barrierye 已提交
29 30 31 32 33 34
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
35

B
barrierye 已提交
36
from .proto import pipeline_service_pb2
T
TeslaZhao 已提交
37
from .channel import (ThreadChannel, ProcessChannel, ChannelDataErrcode,
B
bug fix  
barriery 已提交
38
                      ChannelData, ChannelDataType, ChannelStopError,
T
TeslaZhao 已提交
39
                      ChannelTimeoutError, ProductErrCode)
B
barrierye 已提交
40
from .util import NameGenerator
B
barriery 已提交
41
from .profiler import UnsafeTimeProfiler as TimeProfiler
W
wangjiawei04 已提交
42
from . import local_service_handler
43

44
_LOGGER = logging.getLogger(__name__)
B
barrierye 已提交
45 46
_op_name_gen = NameGenerator("Op")

D
dongdaxiang 已提交
47 48 49

class Op(object):
    def __init__(self,
B
barrierye 已提交
50
                 name=None,
D
dongdaxiang 已提交
51
                 input_ops=[],
B
barriery 已提交
52 53
                 server_endpoints=None,
                 fetch_list=None,
B
barrierye 已提交
54
                 client_config=None,
W
wangjiawei04 已提交
55
                 client_type=None,
B
barriery 已提交
56 57 58 59
                 concurrency=None,
                 timeout=None,
                 retry=None,
                 batch_size=None,
60
                 auto_batching_timeout=None,
W
wangjiawei04 已提交
61
                 local_service_handler=None):
B
barriery 已提交
62
        # In __init__, all the parameters are just saved and Op is not initialized
B
barrierye 已提交
63
        if name is None:
B
barrierye 已提交
64
            name = _op_name_gen.next()
65
        self.name = name  # to identify the type of OP, it must be globally unique
B
barrierye 已提交
66
        self.concurrency = concurrency  # amount of concurrency
B
barrierye 已提交
67
        self.set_input_ops(input_ops)
B
barrierye 已提交
68

W
wangjiawei04 已提交
69
        self._local_service_handler = local_service_handler
B
barriery 已提交
70
        self._server_endpoints = server_endpoints
B
barrierye 已提交
71
        self._fetch_names = fetch_list
B
barriery 已提交
72
        self._client_config = client_config
W
wangjiawei04 已提交
73
        self.client_type = client_type
B
barriery 已提交
74
        self._timeout = timeout
75
        self._retry = max(1, retry)
B
barriery 已提交
76 77 78
        self._batch_size = batch_size
        self._auto_batching_timeout = auto_batching_timeout

79 80
        self._input = None
        self._outputs = []
B
barrierye 已提交
81

B
barriery 已提交
82 83 84 85 86 87 88 89 90
        self._server_use_profile = False
        self._tracer = None

        # only for thread op
        self._for_init_op_lock = threading.Lock()
        self._for_close_op_lock = threading.Lock()
        self._succ_init_op = False
        self._succ_close_op = False

B
barriery 已提交
91
    def init_from_dict(self, conf):
92 93 94 95 96 97 98 99 100 101 102 103
        """
        Initializing one Op from config.yaml. If server_endpoints exist,
        which is remote RPC mode, otherwise it is local RPC mode. There
        are three types of predictios in local RPC mode, brpc, grpc and
        local_predictor.

        Args:
            conf: config.yaml

        Returns:
            None
        """
B
barriery 已提交
104
        # init op
B
barriery 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        if self.concurrency is None:
            self.concurrency = conf["concurrency"]
        if self._retry is None:
            self._retry = conf["retry"]
        if self._fetch_names is None:
            self._fetch_names = conf.get("fetch_list")
        if self._client_config is None:
            self._client_config = conf.get("client_config")

        if self._timeout is None:
            self._timeout = conf["timeout"]
        if self._timeout > 0:
            self._timeout = self._timeout / 1000.0
        else:
            self._timeout = -1

        if self._batch_size is None:
            self._batch_size = conf["batch_size"]
        if self._auto_batching_timeout is None:
            self._auto_batching_timeout = conf["auto_batching_timeout"]
        if self._auto_batching_timeout <= 0 or self._batch_size == 1:
            _LOGGER.warning(
                self._log(
                    "Because auto_batching_timeout <= 0 or batch_size == 1,"
                    " set auto_batching_timeout to None."))
            self._auto_batching_timeout = None
        else:
            self._auto_batching_timeout = self._auto_batching_timeout / 1000.0

134 135 136 137 138 139
        self.model_config = None
        self.workdir = None
        self.thread_num = self.concurrency
        self.devices = ""
        self.mem_optim = False
        self.ir_optim = False
B
barriery 已提交
140 141 142 143 144 145
        if self._server_endpoints is None:
            server_endpoints = conf.get("server_endpoints", [])
            if len(server_endpoints) != 0:
                # remote service
                self.with_serving = True
                self._server_endpoints = server_endpoints
146
                self.client_type = conf["client_type"]
147
            else:
W
wangjiawei04 已提交
148
                if self._local_service_handler is None:
B
barriery 已提交
149
                    local_service_conf = conf.get("local_service_conf")
B
barriery 已提交
150 151
                    _LOGGER.info("local_service_conf: {}".format(
                        local_service_conf))
152
                    self.model_config = local_service_conf.get("model_config")
W
wangjiawei04 已提交
153
                    self.client_type = local_service_conf.get("client_type")
154 155 156 157 158 159 160
                    self.workdir = local_service_conf.get("workdir")
                    self.thread_num = local_service_conf.get("thread_num")
                    self.devices = local_service_conf.get("devices")
                    self.mem_optim = local_service_conf.get("mem_optim")
                    self.ir_optim = local_service_conf.get("ir_optim")
                    self._fetch_names = local_service_conf.get("fetch_list")
                    if self.model_config is None:
B
barriery 已提交
161 162 163 164
                        self.with_serving = False
                    else:
                        # local rpc service
                        self.with_serving = True
W
wangjiawei04 已提交
165 166
                        if self.client_type == "brpc" or self.client_type == "grpc":
                            service_handler = local_service_handler.LocalServiceHandler(
167
                                model_config=self.model_config,
W
wangjiawei04 已提交
168
                                client_type=self.client_type,
169 170 171 172 173
                                workdir=self.workdir,
                                thread_num=self.thread_num,
                                devices=self.devices,
                                mem_optim=self.mem_optim,
                                ir_optim=self.ir_optim)
W
wangjiawei04 已提交
174 175 176 177 178 179 180 181 182 183 184 185
                            service_handler.prepare_server()  # get fetch_list
                            serivce_ports = service_handler.get_port_list()
                            self._server_endpoints = [
                                "127.0.0.1:{}".format(p) for p in serivce_ports
                            ]
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                            if self._fetch_names is None:
                                self._fetch_names = service_handler.get_fetch_list(
                                )
                        elif self.client_type == "local_predictor":
W
wangjiawei04 已提交
186
                            service_handler = local_service_handler.LocalServiceHandler(
187
                                model_config=self.model_config,
W
wangjiawei04 已提交
188
                                client_type=self.client_type,
189 190 191 192
                                workdir=self.workdir,
                                thread_num=self.thread_num,
                                devices=self.devices,
                                fetch_names=self._fetch_names)
W
wangjiawei04 已提交
193 194 195 196
                            if self._client_config is None:
                                self._client_config = service_handler.get_client_config(
                                )
                        self._local_service_handler = service_handler
B
barriery 已提交
197
                else:
B
barriery 已提交
198
                    self.with_serving = True
W
wangjiawei04 已提交
199
                    self._local_service_handler.prepare_server(
B
barriery 已提交
200
                    )  # get fetch_list
W
wangjiawei04 已提交
201
                    serivce_ports = self._local_service_handler.get_port_list()
B
barriery 已提交
202 203 204
                    self._server_endpoints = [
                        "127.0.0.1:{}".format(p) for p in serivce_ports
                    ]
B
barriery 已提交
205
                    if self._client_config is None:
W
wangjiawei04 已提交
206
                        self._client_config = self._local_service_handler.get_client_config(
B
barriery 已提交
207
                        )
B
barriery 已提交
208
                    if self._fetch_names is None:
W
wangjiawei04 已提交
209
                        self._fetch_names = self._local_service_handler.get_fetch_list(
B
barriery 已提交
210
                        )
B
barriery 已提交
211 212
        else:
            self.with_serving = True
B
barriery 已提交
213

214 215 216 217 218 219 220 221 222 223 224
        if not isinstance(self, RequestOp) and not isinstance(self, ResponseOp):
            _LOGGER.info(
                self._log("\n\tinput_ops: {},"
                          "\n\tserver_endpoints: {}"
                          "\n\tfetch_list: {}"
                          "\n\tclient_config: {}"
                          "\n\tconcurrency: {},"
                          "\n\ttimeout(s): {},"
                          "\n\tretry: {},"
                          "\n\tbatch_size: {},"
                          "\n\tauto_batching_timeout(s): {}".format(
B
barriery 已提交
225
                              ", ".join([op.name for op in self._input_ops
226 227 228 229
                                         ]), self._server_endpoints,
                              self._fetch_names, self._client_config,
                              self.concurrency, self._timeout, self._retry,
                              self._batch_size, self._auto_batching_timeout)))
B
barriery 已提交
230

231
    def launch_local_rpc_service(self):
232 233 234 235 236 237 238 239 240
        """
        Launching multiple local rpc servers.

        Args:
            None

        Returns:
            None
        """
W
wangjiawei04 已提交
241
        if self._local_service_handler is None:
B
barriery 已提交
242 243
            _LOGGER.warning(
                self._log("Failed to launch local rpc"
W
wangjiawei04 已提交
244
                          " service: local_service_handler is None."))
B
barriery 已提交
245
            return
W
wangjiawei04 已提交
246
        port = self._local_service_handler.get_port_list()
W
wangjiawei04 已提交
247 248 249
        #if self._local_service_handler.client_type == "local_predictor":
        #    _LOGGER.info("Op({}) use local predictor.")
        #    return
W
wangjiawei04 已提交
250
        self._local_service_handler.start_server()
B
barriery 已提交
251
        _LOGGER.info("Op({}) use local rpc service at port: {}"
252 253
                     .format(self.name, port))

B
barriery 已提交
254
    def use_default_auto_batching_config(self):
255 256 257 258 259 260 261 262 263
        """
        Set the auto batching config default.

        Args:
            None

        Returns:
            None
        """
B
bug fix  
barriery 已提交
264
        if self._batch_size != 1:
265 266
            _LOGGER.warning("Op({}) reset batch_size=1 (original: {})"
                            .format(self.name, self._batch_size))
B
bug fix  
barriery 已提交
267 268
            self._batch_size = 1
        if self._auto_batching_timeout != None:
269
            _LOGGER.warning(
B
barriery 已提交
270 271
                "Op({}) reset auto_batching_timeout=None (original: {})"
                .format(self.name, self._auto_batching_timeout))
B
bug fix  
barriery 已提交
272
            self._auto_batching_timeout = None
B
barriery 已提交
273

B
barrierye 已提交
274
    def use_profiler(self, use_profile):
B
barrierye 已提交
275
        self._server_use_profile = use_profile
276

B
barriery 已提交
277 278 279
    def set_tracer(self, tracer):
        self._tracer = tracer

W
wangjiawei04 已提交
280
    def init_client(self, client_config, server_endpoints):
281 282 283 284 285 286 287 288 289 290 291 292
        """
        Initialize the client object. There are three types of clients, brpc,
        grpc and local_predictor. In grpc or brpc mode, the client connects 
        endpoints.

        Args:
            client_config: client config info
            server_endpoints: server IP/Port list.

        Returns:
            client: client object.
        """
293
        if self.with_serving == False:
B
barriery 已提交
294
            _LOGGER.info("Op({}) has no client (and it also do not "
295
                         "run the process function)".format(self.name))
B
barrierye 已提交
296
            return None
W
wangjiawei04 已提交
297
        if self.client_type == 'brpc':
B
barrierye 已提交
298 299
            client = Client()
            client.load_client_config(client_config)
W
wangjiawei04 已提交
300
        elif self.client_type == 'grpc':
B
barrierye 已提交
301
            client = MultiLangClient()
W
wangjiawei04 已提交
302 303 304 305
        elif self.client_type == 'local_predictor':
            if self.local_predictor is None:
                raise ValueError("local predictor not yet created")
            client = self.local_predictor
306
        else:
B
barriery 已提交
307
            raise ValueError("Failed to init client: unknow client "
W
wangjiawei04 已提交
308
                             "type {}".format(self.client_type))
W
wangjiawei04 已提交
309 310 311
        if self._fetch_names is None:
            self._fetch_names = client.fetch_names_
            _LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
W
wangjiawei04 已提交
312 313
        if self.client_type != "local_predictor":
            client.connect(server_endpoints)
B
barrierye 已提交
314
        return client
315 316 317 318 319

    def get_input_ops(self):
        return self._input_ops

    def set_input_ops(self, ops):
320 321 322 323 324 325 326 327 328 329
        """
        Set input ops.Each op have many input ops, but only one input
        channel.

        Args:
            ops: op list

        Returns:
            None.
        """
330 331 332 333 334
        if not isinstance(ops, list):
            ops = [] if ops is None else [ops]
        self._input_ops = []
        for op in ops:
            if not isinstance(op, Op):
335
                _LOGGER.critical(
B
barriery 已提交
336 337
                    self._log("Failed to set input_ops: input op "
                              "must be Op type, not {}".format(type(op))))
338
                os._exit(-1)
339
            self._input_ops.append(op)
D
dongdaxiang 已提交
340

341
    def add_input_channel(self, channel):
342 343 344 345
        """
        Adding one input channel to the Op. Each op have many front op,
        but, only one input channel.
        """
346
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
347
            _LOGGER.critical(
B
barriery 已提交
348 349 350
                self._log("Failed to set input_channel: input "
                          "channel must be Channel type, not {}".format(
                              type(channel))))
351
            os._exit(-1)
352 353
        channel.add_consumer(self.name)
        self._input = channel
D
dongdaxiang 已提交
354

355
    def clean_input_channel(self):
B
barrierye 已提交
356 357 358 359
        self._input = None

    def _get_input_channel(self):
        return self._input
D
dongdaxiang 已提交
360

361
    def add_output_channel(self, channel):
362 363 364 365 366 367 368 369 370 371
        """
        Adding one output channel to the Op. Each op have many output channels,
        But only one front channel.

        Args:
            channel: an output channel object.

        Returns:
            None
        """
372
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
373
            _LOGGER.critical(
B
barriery 已提交
374 375
                self._log("Failed to add output_channel: output channel "
                          "must be Channel type, not {}".format(type(channel))))
376
            os._exit(-1)
377 378
        channel.add_producer(self.name)
        self._outputs.append(channel)
D
dongdaxiang 已提交
379

380
    def clean_output_channels(self):
B
barrierye 已提交
381 382 383 384 385
        self._outputs = []

    def _get_output_channels(self):
        return self._outputs

386
    def preprocess(self, input_dicts, data_id=0, log_id=0):
T
TeslaZhao 已提交
387 388 389 390 391 392
        """
        In preprocess stage, assembling data for process stage. users can 
        override this function for model feed features.

        Args:
            input_dicts: input data to be preprocessed
393 394
            data_id: inner unique id, 0 default
            log_id: global unique id for RTT, 0 default
T
TeslaZhao 已提交
395 396 397 398 399 400 401 402

        Return:
            input_dict: data for process stage
            is_skip_process: skip process stage or not, False default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception. 
            prod_errinfo: "" default
        """
B
barrierye 已提交
403
        # multiple previous Op
B
barrierye 已提交
404
        if len(input_dicts) != 1:
405 406
            _LOGGER.critical(
                self._log(
B
barriery 已提交
407 408
                    "Failed to run preprocess: this Op has multiple previous "
                    "inputs. Please override this func."))
409
            os._exit(-1)
D
dongdaxiang 已提交
410

B
barrierye 已提交
411
        (_, input_dict), = input_dicts.items()
T
TeslaZhao 已提交
412
        return input_dict, False, None, ""
B
barrierye 已提交
413

414
    def process(self, feed_batch, typical_logid=0):
T
TeslaZhao 已提交
415 416 417 418 419
        """
        In process stage, send requests to the inference server or predict locally.
        users do not need to inherit this function
        Args:
            feed_batch: data to be fed to inference server
420 421
            typical_logid: mark batch predicts, usually the first logid in batch,
                0 default.
T
TeslaZhao 已提交
422 423 424 425

        Returns:
            call_result: predict result
        """
B
bug fix  
barriery 已提交
426
        err, err_info = ChannelData.check_batch_npdata(feed_batch)
B
barrierye 已提交
427
        if err != 0:
428
            _LOGGER.critical(
B
barriery 已提交
429 430
                self._log("Failed to run process: {}. Please override "
                          "preprocess func.".format(err_info)))
431
            os._exit(-1)
W
wangjiawei04 已提交
432 433 434
        if self.client_type == "local_predictor":
            call_result = self.client.predict(
                feed=feed_batch[0],
W
wangjiawei04 已提交
435
                fetch=self._fetch_names,
W
wangjiawei04 已提交
436 437 438 439 440
                batch=True,
                log_id=typical_logid)
        else:
            call_result = self.client.predict(
                feed=feed_batch,
W
wangjiawei04 已提交
441
                fetch=self._fetch_names,
W
wangjiawei04 已提交
442 443
                batch=True,
                log_id=typical_logid)
B
barriery 已提交
444 445 446 447
        if isinstance(self.client, MultiLangClient):
            if call_result is None or call_result["serving_status_code"] != 0:
                return None
            call_result.pop("serving_status_code")
448 449
        return call_result

450
    def postprocess(self, input_dict, fetch_dict, log_id=0):
T
TeslaZhao 已提交
451 452 453 454 455
        """
        In postprocess stage, assemble data for next op or output.
        Args:
            input_dict: data returned in preprocess stage.
            fetch_dict: data returned in process stage.
456
            log_id: logid, 0 default
T
TeslaZhao 已提交
457 458 459 460 461 462 463 464

        Returns: 
            fetch_dict: return fetch_dict default
            prod_errcode: None default, otherwise, product errores occured.
                          It is handled in the same way as exception.
            prod_errinfo: "" default
        """
        return fetch_dict, None, ""
D
dongdaxiang 已提交
465

B
barrierye 已提交
466
    def _parse_channeldata(self, channeldata_dict):
T
TeslaZhao 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479
        """
        Parse one channeldata 
        Args:
            channeldata_dict : channel data to be parsed, dict type
        
        Return:
            data_id: created by dag._id_generator, unique
            error_channeldata: error channeldata
            parsed_data: get np/dict data from channeldata
            client_need_profile: need profile info
            profile_set: profile info
            log_id: logid for tracing a request 
        """
480
        data_id, error_channeldata = None, None
B
barrierye 已提交
481
        client_need_profile, profile_set = False, set()
B
barrierye 已提交
482 483 484 485
        parsed_data = {}

        key = list(channeldata_dict.keys())[0]
        data_id = channeldata_dict[key].id
T
TeslaZhao 已提交
486
        log_id = channeldata_dict[key].log_id
B
barrierye 已提交
487
        client_need_profile = channeldata_dict[key].client_need_profile
B
barrierye 已提交
488 489

        for name, data in channeldata_dict.items():
T
TeslaZhao 已提交
490
            if data.error_code != ChannelDataErrcode.OK.value:
B
barrierye 已提交
491 492 493
                error_channeldata = data
                break
            parsed_data[name] = data.parse()
B
barrierye 已提交
494
            if client_need_profile:
B
barrierye 已提交
495
                profile_set |= data.profile_data_set
B
barrierye 已提交
496
        return (data_id, error_channeldata, parsed_data, client_need_profile,
T
TeslaZhao 已提交
497
                profile_set, log_id)
B
barrierye 已提交
498 499 500 501 502

    def _push_to_output_channels(self,
                                 data,
                                 channels,
                                 name=None,
B
barriery 已提交
503
                                 profile_str=None,
B
barrierye 已提交
504
                                 client_need_profile=False,
B
barrierye 已提交
505
                                 profile_set=None):
T
TeslaZhao 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519
        """
        Push data to output channels, Do not run the later stage(preprocess,
        process, postprocess)
        Args:
            data: channeldata, to be pushed
            channels: output channels
            name: op name  
            profile_str: one profile message
            client_need_profile: False default
            profile_set: profile message collections

        Returns:
            None
        """
520 521
        if name is None:
            name = self.name
B
barrierye 已提交
522

B
barriery 已提交
523
        # add profile into channeldata
B
barrierye 已提交
524
        if client_need_profile and profile_set is not None:
B
barriery 已提交
525 526
            if profile_str is not None:
                profile_set.add(profile_str)
B
barrierye 已提交
527
            data.add_profile(profile_set)
B
barrierye 已提交
528

B
barriery 已提交
529 530 531
        for channel in channels:
            channel.push(data, name)

W
wangjiawei04 已提交
532
    def start_with_process(self):
533 534 535 536 537 538 539 540 541 542
        """
        Each OP creates a process to run the main loop, initializes the CUDA
        environment in each individual process.

        Args:
            None

        Returns:
            process array
        """
B
barriery 已提交
543 544 545
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
W
wangjiawei04 已提交
546
        process = []
B
barrierye 已提交
547
        for concurrency_idx in range(self.concurrency):
548 549
            p = multiprocessing.Process(
                target=self._run,
B
barrierye 已提交
550
                args=(concurrency_idx, self._get_input_channel(),
551 552 553
                      self._get_output_channels(), False, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
                      self.devices, self.mem_optim, self.ir_optim))
B
barriery 已提交
554
            p.daemon = True
555
            p.start()
W
wangjiawei04 已提交
556 557
            process.append(p)
        return process
558

W
wangjiawei04 已提交
559
    def start_with_thread(self):
560 561 562 563 564 565 566 567 568 569
        """
        Each OP creates a thread to run the main loop, initializes the CUDA 
        environment in the main thread.

        Args:
            None
 
        Returns:
            thread array
        """
B
barriery 已提交
570 571 572
        trace_buffer = None
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
573 574 575 576 577 578

        #Init cuda env in main thread
        if self.client_type == "local_predictor":
            _LOGGER.info("Init cuda env in main thread")
            self.local_predictor = self._local_service_handler.get_client()

579
        threads = []
B
barrierye 已提交
580
        for concurrency_idx in range(self.concurrency):
581 582
            t = threading.Thread(
                target=self._run,
B
barrierye 已提交
583
                args=(concurrency_idx, self._get_input_channel(),
584 585 586
                      self._get_output_channels(), True, trace_buffer,
                      self.model_config, self.workdir, self.thread_num,
                      self.devices, self.mem_optim, self.ir_optim))
B
barriery 已提交
587 588 589
            # When a process exits, it attempts to terminate
            # all of its daemonic child processes.
            t.daemon = True
590 591 592 593
            t.start()
            threads.append(t)
        return threads

B
barrierye 已提交
594
    def init_op(self):
B
barrierye 已提交
595 596
        pass

T
TeslaZhao 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610
    def _run_preprocess(self, parsed_data_dict, op_info_prefix, logid_dict):
        """
        Run preprocess stage
        Args:
            parsed_data_dict: data to be pre-processed
            op_info_prefix: input op info
            logid_dict: logid dict

        Returns:
            preped_data_dict: data preprocessed, to be processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it.
            skip_process_dict: skip process stage or not

        """
B
barriery 已提交
611
        _LOGGER.debug("{} Running preprocess".format(op_info_prefix))
612 613
        preped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
614
        skip_process_dict = {}
615 616
        for data_id, parsed_data in parsed_data_dict.items():
            preped_data, error_channeldata = None, None
T
TeslaZhao 已提交
617 618 619
            is_skip_process = False
            prod_errcode, prod_errinfo = None, None
            log_id = logid_dict.get(data_id)
620
            try:
T
TeslaZhao 已提交
621 622 623 624 625
                preped_data, is_skip_process, prod_errcode, prod_errinfo = self.preprocess(
                    parsed_data, data_id, logid_dict.get(data_id))
                # Set skip_process_dict
                if is_skip_process is True:
                    skip_process_dict[data_id] = True
626 627
            except TypeError as e:
                # Error type in channeldata.datatype
T
TeslaZhao 已提交
628 629
                error_info = "(data_id={} log_id={}) {} Failed to preprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
630
                _LOGGER.error(error_info, exc_info=True)
631
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
632
                    error_code=ChannelDataErrcode.TYPE_ERROR.value,
633
                    error_info=error_info,
T
TeslaZhao 已提交
634 635
                    data_id=data_id,
                    log_id=log_id)
636
            except Exception as e:
T
TeslaZhao 已提交
637 638
                error_info = "(data_id={} log_id={}) {} Failed to preprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
639
                _LOGGER.error(error_info, exc_info=True)
640
                error_channeldata = ChannelData(
T
TeslaZhao 已提交
641
                    error_code=ChannelDataErrcode.UNKNOW.value,
642
                    error_info=error_info,
T
TeslaZhao 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655
                    data_id=data_id,
                    log_id=log_id)

            if prod_errcode is not None:
                # product errors occured
                error_channeldata = ChannelData(
                    error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                    error_info="",
                    prod_error_code=prod_errcode,
                    prod_error_info=prod_errinfo,
                    data_id=data_id,
                    log_id=log_id)

656 657 658 659
            if error_channeldata is not None:
                err_channeldata_dict[data_id] = error_channeldata
            else:
                preped_data_dict[data_id] = preped_data
B
barriery 已提交
660
        _LOGGER.debug("{} Succ preprocess".format(op_info_prefix))
T
TeslaZhao 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        return preped_data_dict, err_channeldata_dict, skip_process_dict

    def _run_process(self, preped_data_dict, op_info_prefix, skip_process_dict,
                     logid_dict):
        """
        Run process stage
        Args:
            preped_data_dict: feed the data to be predicted by the model.  
            op_info_prefix: prefix op info
            skip_process_dict: skip process stage or not
            logid_dict: logid dict

        Returns:
            midped_data_dict: data midprocessed, to be post-processed 
            err_channeldata_dict: when exceptions occurred, putting errors in it 
        """
B
barriery 已提交
677
        _LOGGER.debug("{} Running process".format(op_info_prefix))
678 679
        midped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
T
TeslaZhao 已提交
680 681 682 683 684 685 686 687 688 689
        ### if (batch_num == 1 && skip == True) ,then skip the process stage.
        is_skip_process = False
        data_ids = preped_data_dict.keys()
        if len(data_ids) == 1 and skip_process_dict.get(data_ids[0]) == True:
            is_skip_process = True
            _LOGGER.info("(data_id={} log_id={}) skip process stage".format(
                data_ids[0], logid_dict.get(data_ids[0])))

        if self.with_serving is True and is_skip_process is False:
            # use typical_logid to mark batch data
B
barriery 已提交
690 691 692 693
            typical_logid = data_ids[0]
            if len(data_ids) != 1:
                for data_id in data_ids:
                    _LOGGER.info(
T
TeslaZhao 已提交
694
                        "(data_id={} logid={}) {} During access to PaddleServingService,"
695 696
                        " we selected logid={} (from batch: {}) as a "
                        "representative for logging.".format(
T
TeslaZhao 已提交
697 698 699
                            data_id,
                            logid_dict.get(data_id), op_info_prefix,
                            typical_logid, data_ids))
B
barrierye 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

            # combine samples to batch
            one_input = preped_data_dict[data_ids[0]]
            feed_batch = []
            input_offset = None
            if isinstance(one_input, dict):
                # sample input
                feed_batch = [preped_data_dict[data_id] for data_id in data_ids]
                input_offset = list(range(len(data_ids) + 1))
            elif isinstance(one_input, list):
                # batch input
                input_offset = [0]
                for data_id in data_ids:
                    batch_input = preped_data_dict[data_id]
                    offset = input_offset[-1] + len(batch_input)
                    feed_batch += batch_input
                    input_offset.append(offset)
            else:
                _LOGGER.critical(
T
TeslaZhao 已提交
719 720 721
                    "(data_id={} log_id={}){} Failed to process: expect input type is dict(sample"
                    " input) or list(batch input), but get {}".format(data_ids[
                        0], typical_logid, op_info_prefix, type(one_input)))
B
barrierye 已提交
722 723
                os._exit(-1)

B
bug fix  
barriery 已提交
724
            midped_batch = None
T
TeslaZhao 已提交
725
            error_code = ChannelDataErrcode.OK.value
726 727
            if self._timeout <= 0:
                try:
B
barriery 已提交
728
                    midped_batch = self.process(feed_batch, typical_logid)
729
                except Exception as e:
T
TeslaZhao 已提交
730 731 732
                    error_code = ChannelDataErrcode.UNKNOW.value
                    error_info = "(data_id={} log_id={}) {} Failed to process(batch: {}): {}".format(
                        data_ids[0], typical_logid, op_info_prefix, data_ids, e)
B
barriery 已提交
733
                    _LOGGER.error(error_info, exc_info=True)
734
            else:
T
TeslaZhao 已提交
735
                # retry N times configed in yaml files.
736 737
                for i in range(self._retry):
                    try:
T
TeslaZhao 已提交
738
                        # time out for each process
739
                        midped_batch = func_timeout.func_timeout(
B
barriery 已提交
740 741 742
                            self._timeout,
                            self.process,
                            args=(feed_batch, typical_logid))
743 744
                    except func_timeout.FunctionTimedOut as e:
                        if i + 1 >= self._retry:
T
TeslaZhao 已提交
745 746
                            error_code = ChannelDataErrcode.TIMEOUT.value
                            error_info = "(log_id={}) {} Failed to process(batch: {}): " \
B
barriery 已提交
747
                                    "exceeded retry count.".format(
B
barriery 已提交
748
                                            typical_logid, op_info_prefix, data_ids)
749 750
                            _LOGGER.error(error_info)
                        else:
751
                            _LOGGER.warning(
T
TeslaZhao 已提交
752
                                "(log_id={}) {} Failed to process(batch: {}): timeout,"
B
barriery 已提交
753 754 755
                                " and retrying({}/{})...".format(
                                    typical_logid, op_info_prefix, data_ids, i +
                                    1, self._retry))
756
                    except Exception as e:
T
TeslaZhao 已提交
757 758
                        error_code = ChannelDataErrcode.UNKNOW.value
                        error_info = "(log_id={}) {} Failed to process(batch: {}): {}".format(
B
barriery 已提交
759
                            typical_logid, op_info_prefix, data_ids, e)
B
barriery 已提交
760
                        _LOGGER.error(error_info, exc_info=True)
761 762 763
                        break
                    else:
                        break
T
TeslaZhao 已提交
764
            if error_code != ChannelDataErrcode.OK.value:
765 766
                for data_id in data_ids:
                    err_channeldata_dict[data_id] = ChannelData(
T
TeslaZhao 已提交
767 768 769 770
                        error_code=error_code,
                        error_info=error_info,
                        data_id=data_id,
                        log_id=logid_dict.get(data_id))
771
            elif midped_batch is None:
772
                # op client return None
T
TeslaZhao 已提交
773
                error_info = "(log_id={}) {} Failed to predict, please check if " \
B
barriery 已提交
774 775 776
                        "PaddleServingService is working properly.".format(
                                typical_logid, op_info_prefix)
                _LOGGER.error(error_info)
777 778
                for data_id in data_ids:
                    err_channeldata_dict[data_id] = ChannelData(
T
TeslaZhao 已提交
779
                        error_code=ChannelDataErrcode.CLIENT_ERROR.value,
B
barriery 已提交
780
                        error_info=error_info,
T
TeslaZhao 已提交
781 782
                        data_id=data_id,
                        log_id=logid_dict.get(data_id))
783 784
            else:
                # transform np format to dict format
B
barrierye 已提交
785 786 787 788 789 790
                var_names = midped_batch.keys()
                lod_var_names = set()
                lod_offset_names = set()
                for name in var_names:
                    lod_offset_name = "{}.lod".format(name)
                    if lod_offset_name in var_names:
T
TeslaZhao 已提交
791
                        _LOGGER.debug("(log_id={}) {} {} is LodTensor".format(
B
barrierye 已提交
792 793 794
                            typical_logid, op_info_prefix, name))
                        lod_var_names.add(name)
                        lod_offset_names.add(lod_offset_name)
B
barriery 已提交
795

796
                for idx, data_id in enumerate(data_ids):
B
barrierye 已提交
797
                    midped_data_dict[data_id] = {}
B
barriery 已提交
798

B
barrierye 已提交
799 800 801 802 803 804
                for name, value in midped_batch.items():
                    if name in lod_offset_names:
                        continue
                    if name in lod_var_names:
                        # lodtensor
                        lod_offset_name = "{}.lod".format(name)
B
barrierye 已提交
805
                        lod_offset = midped_batch[lod_offset_name]
B
barrierye 已提交
806
                        for idx, data_id in enumerate(data_ids):
B
barrierye 已提交
807 808 809 810
                            data_offset_left = input_offset[idx]
                            data_offset_right = input_offset[idx + 1]
                            lod_offset_left = lod_offset[data_offset_left]
                            lod_offset_right = lod_offset[data_offset_right]
B
barriery 已提交
811 812
                            midped_data_dict[data_id][name] = value[
                                lod_offset_left:lod_offset_right]
B
barrierye 已提交
813 814
                            midped_data_dict[data_id][lod_offset_name] = \
                                    lod_offset[data_offset_left:data_offset_right + 1] - lod_offset[data_offset_left]
B
barrierye 已提交
815
                    else:
B
barrierye 已提交
816
                        # normal tensor
B
barrierye 已提交
817
                        for idx, data_id in enumerate(data_ids):
B
barrierye 已提交
818 819 820
                            left = input_offset[idx]
                            right = input_offset[idx + 1]
                            midped_data_dict[data_id][name] = value[left:right]
821
        else:
822
            midped_data_dict = preped_data_dict
B
barriery 已提交
823
        _LOGGER.debug("{} Succ process".format(op_info_prefix))
824 825
        return midped_data_dict, err_channeldata_dict

B
barriery 已提交
826
    def _run_postprocess(self, parsed_data_dict, midped_data_dict,
T
TeslaZhao 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
                         op_info_prefix, logid_dict):
        """
        Run postprocess stage.
        Args:
            parsed_data_dict: data returned in preprocess stage 
            midped_data_dict: data returned in process stage
            op_info_prefix: prefix op info
            logid_dict: logid dict

        Returns:
            postped_data_dict: data postprocessed 
            err_channeldata_dict: when exceptions occurred, putting errors in it
 
        """
B
barriery 已提交
841
        _LOGGER.debug("{} Running postprocess".format(op_info_prefix))
842 843
        postped_data_dict = collections.OrderedDict()
        err_channeldata_dict = collections.OrderedDict()
B
bug fix  
barriery 已提交
844
        for data_id, midped_data in midped_data_dict.items():
T
TeslaZhao 已提交
845
            log_id = logid_dict.get(data_id)
846
            postped_data, err_channeldata = None, None
T
TeslaZhao 已提交
847
            prod_errcode, prod_errinfo = None, None
848
            try:
T
TeslaZhao 已提交
849 850 851
                postped_data, prod_errcode, prod_errinfo = self.postprocess(
                    parsed_data_dict[data_id], midped_data,
                    logid_dict.get(data_id))
852
            except Exception as e:
T
TeslaZhao 已提交
853 854
                error_info = "(data_id={} log_id={}) {} Failed to postprocess: {}".format(
                    data_id, log_id, op_info_prefix, e)
B
barriery 已提交
855
                _LOGGER.error(error_info, exc_info=True)
856
                err_channeldata = ChannelData(
T
TeslaZhao 已提交
857
                    error_code=ChannelDataErrcode.UNKNOW.value,
858
                    error_info=error_info,
T
TeslaZhao 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871
                    data_id=data_id,
                    log_id=log_id)

            if prod_errcode is not None:
                # product errors occured
                err_channeldata = ChannelData(
                    error_code=ChannelDataErrcode.PRODUCT_ERROR.value,
                    error_info="",
                    prod_error_code=prod_errcode,
                    prod_error_info=prod_errinfo,
                    data_id=data_id,
                    log_id=log_id)

872 873 874 875 876
            if err_channeldata is not None:
                err_channeldata_dict[data_id] = err_channeldata
                continue
            else:
                if not isinstance(postped_data, dict):
T
TeslaZhao 已提交
877
                    error_info = "(log_id={} log_id={}) {} Failed to postprocess: " \
B
barriery 已提交
878 879
                            "output of postprocess funticon must be " \
                            "dict type, but get {}".format(
T
TeslaZhao 已提交
880
                                data_id, log_id, op_info_prefix,
B
barriery 已提交
881
                                type(postped_data))
882 883
                    _LOGGER.error(error_info)
                    err_channeldata = ChannelData(
T
TeslaZhao 已提交
884
                        error_code=ChannelDataErrcode.UNKNOW.value,
885
                        error_info=error_info,
T
TeslaZhao 已提交
886 887
                        data_id=data_id,
                        log_id=log_id)
888 889 890 891 892 893 894 895 896
                    err_channeldata_dict[data_id] = err_channeldata
                    continue

                output_data = None
                err, _ = ChannelData.check_npdata(postped_data)
                if err == 0:
                    output_data = ChannelData(
                        ChannelDataType.CHANNEL_NPDATA.value,
                        npdata=postped_data,
T
TeslaZhao 已提交
897 898
                        data_id=data_id,
                        log_id=log_id)
899 900 901 902
                else:
                    output_data = ChannelData(
                        ChannelDataType.DICT.value,
                        dictdata=postped_data,
T
TeslaZhao 已提交
903 904
                        data_id=data_id,
                        log_id=log_id)
905
                postped_data_dict[data_id] = output_data
B
barriery 已提交
906
        _LOGGER.debug("{} Succ postprocess".format(op_info_prefix))
907
        return postped_data_dict, err_channeldata_dict
B
barriery 已提交
908 909

    def _auto_batching_generator(self, input_channel, op_name, batch_size,
B
barriery 已提交
910
                                 timeout, op_info_prefix):
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        """
        Merge batch_size requests for one prediction.Taking one piece of data 
        from the input channel each time until equals batch_size, or the waiting 
        time exceeds auto_batching_timeout.

        Args:
            input_channel: the input channel of Op
            op_name: op name
            batch_size: batch size, Less than worker_num
            timeout: batch timeout, seconds, If timeout is None, and the quantity 
                taken from the front is less than batch_size, blocking occured.
            op_info_prefix: op link info.

        Returns:
            None
        """
B
barriery 已提交
927 928 929 930 931 932 933 934 935 936 937 938
        while True:
            batch = []
            while len(batch) == 0:
                endtime = None
                if timeout is not None:
                    endtime = _time() + timeout
                for idx in range(batch_size):
                    try:
                        channeldata_dict = None
                        if timeout is not None:
                            remaining = endtime - _time()
                            if remaining <= 0.0:
B
barriery 已提交
939 940
                                _LOGGER.debug("{} Failed to generate batch: "
                                              "timeout".format(op_info_prefix))
B
barriery 已提交
941
                                break
B
barriery 已提交
942 943
                            channeldata_dict = input_channel.front(op_name,
                                                                   timeout)
B
barriery 已提交
944 945 946
                        else:
                            channeldata_dict = input_channel.front(op_name)
                        batch.append(channeldata_dict)
947 948 949
                        _LOGGER.debug(
                            "_auto_batching_generator get {} channeldata from op:{} into batch, batch_size:{}".
                            format(idx, op_name, batch_size))
B
barriery 已提交
950
                    except ChannelTimeoutError:
B
barriery 已提交
951 952
                        _LOGGER.debug("{} Failed to generate batch: "
                                      "timeout".format(op_info_prefix))
B
barriery 已提交
953
                        break
B
barriery 已提交
954 955
            _LOGGER.debug("{} Got actual batch_size: {}".format(op_info_prefix,
                                                                len(batch)))
B
barriery 已提交
956
            yield batch
957

958
    def _parse_channeldata_batch(self, batch, output_channels):
T
TeslaZhao 已提交
959 960 961 962 963 964 965 966 967 968 969 970
        """
        Parse channeldatas batch
        Args:
            batch: auto-batching batch datas
            output_channels: output channels 

        Returns:
            parsed_data_dict: parsed from channeldata in batch
            need_profile_dict: need profile dict in batch 
            profile_dict: profile info dict in batch
            logid_dict: trace each request in batch
        """
971
        parsed_data_dict = collections.OrderedDict()
972 973
        need_profile_dict = {}
        profile_dict = {}
T
TeslaZhao 已提交
974
        logid_dict = {}
B
bug fix  
barriery 已提交
975
        for channeldata_dict in batch:
976
            (data_id, error_channeldata, parsed_data,
T
TeslaZhao 已提交
977
                    client_need_profile, profile_set, log_id) = \
978 979 980 981 982
                            self._parse_channeldata(channeldata_dict)
            if error_channeldata is None:
                parsed_data_dict[data_id] = parsed_data
                need_profile_dict[data_id] = client_need_profile
                profile_dict[data_id] = profile_set
T
TeslaZhao 已提交
983
                logid_dict[data_id] = log_id
984 985 986
            else:
                # error data in predecessor Op
                # (error_channeldata with profile info)
B
barriery 已提交
987 988
                self._push_to_output_channels(error_channeldata,
                                              output_channels)
989

T
TeslaZhao 已提交
990
        return parsed_data_dict, need_profile_dict, profile_dict, logid_dict
B
barriery 已提交
991

W
wangjiawei04 已提交
992
    def _run(self, concurrency_idx, input_channel, output_channels,
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
             is_thread_op, trace_buffer, model_config, workdir, thread_num,
             devices, mem_optim, ir_optim):
        """
        _run() is the entry function of OP process / thread model.When client 
        type is local_predictor in process mode, the CUDA environment needs to 
        be initialized by LocalServiceHandler[child process], otherwise, Cuda
        error(3), initialization error is occured. Preprocess, process and 
        postprocess are executed in the main loop. The preprocess and postprocess
        function is usually rewrited by users. Trace data is recorded by trace_que.

        Args:
            concurrency_idx: thread/process index
            input_channel: input channel, take the data to be processed
            output_channels: output channel, store processed data
            is_thread_op: False, It's process op; True, It's thread op
            trace_buffer: store trace infomations
            model_config: model config path
            workdir: work directory
            thread_num: number of threads, concurrent quantity
            devices: gpu id list[gpu], "" default[cpu]
            mem_optim: use memory/graphics memory optimization, True default.
            ir_optim: use calculation chart optimization, False default. 

        Returns:
            None
        """
1019
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1020
        tid = threading.current_thread().ident
B
barrierye 已提交
1021

1022
        # init ops
B
barriery 已提交
1023
        profiler = None
B
barrierye 已提交
1024
        try:
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            if is_thread_op == False and self.client_type == "local_predictor":
                self.service_handler = local_service_handler.LocalServiceHandler(
                    model_config=model_config,
                    client_type="local_predictor",
                    workdir=workdir,
                    thread_num=thread_num,
                    devices=devices,
                    mem_optim=mem_optim,
                    ir_optim=ir_optim)

                _LOGGER.info("Init cuda env in process {}".format(
                    concurrency_idx))
                self.local_predictor = self.service_handler.get_client()
            # check all ops initialized successfully.
W
wangjiawei04 已提交
1039
            profiler = self._initialize(is_thread_op, concurrency_idx)
1040

B
barrierye 已提交
1041
        except Exception as e:
B
barriery 已提交
1042
            _LOGGER.critical(
T
TeslaZhao 已提交
1043
                "{} failed to init op: {}".format(op_info_prefix, e),
B
barriery 已提交
1044
                exc_info=True)
B
barrierye 已提交
1045
            os._exit(-1)
B
barriery 已提交
1046
        _LOGGER.info("{} Succ init".format(op_info_prefix))
1047

B
barriery 已提交
1048
        batch_generator = self._auto_batching_generator(
B
barriery 已提交
1049 1050 1051 1052
            input_channel=input_channel,
            op_name=self.name,
            batch_size=self._batch_size,
            timeout=self._auto_batching_timeout,
B
barriery 已提交
1053
            op_info_prefix=op_info_prefix)
B
barriery 已提交
1054

B
barriery 已提交
1055
        start, end = None, None
B
barrierye 已提交
1056
        trace_que = collections.deque()
B
barrierye 已提交
1057
        while True:
B
barriery 已提交
1058
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1059
            try:
B
barriery 已提交
1060
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1061
            except ChannelStopError:
B
barriery 已提交
1062
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
B
barriery 已提交
1063
                self._finalize(is_thread_op)
B
barrierye 已提交
1064
                break
B
barriery 已提交
1065
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1066
            in_time = end - start
1067

B
barriery 已提交
1068 1069
            # parse channeldata batch
            try:
T
TeslaZhao 已提交
1070
                parsed_data_dict, need_profile_dict, profile_dict, logid_dict\
1071 1072
                        = self._parse_channeldata_batch(
                                channeldata_dict_batch, output_channels)
B
barriery 已提交
1073
            except ChannelStopError:
B
barriery 已提交
1074
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1075
                self._finalize(is_thread_op)
B
barriery 已提交
1076
                break
1077 1078 1079
            if len(parsed_data_dict) == 0:
                # data in the whole batch is all error data
                continue
1080 1081

            # preprecess
B
barriery 已提交
1082
            start = profiler.record("prep#{}_0".format(op_info_prefix))
T
TeslaZhao 已提交
1083 1084
            preped_data_dict, err_channeldata_dict, skip_process_dict \
                    = self._run_preprocess(parsed_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1085
            end = profiler.record("prep#{}_1".format(op_info_prefix))
B
barrierye 已提交
1086
            prep_time = end - start
1087
            try:
T
TeslaZhao 已提交
1088
                # put error requests into output channel, skip process and postprocess stage
1089
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1090
                    self._push_to_output_channels(
B
barriery 已提交
1091 1092
                        data=err_channeldata,
                        channels=output_channels,
1093 1094 1095
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
            except ChannelStopError:
B
barriery 已提交
1096
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1097 1098
                self._finalize(is_thread_op)
                break
B
bug fix  
barrierye 已提交
1099
            if len(preped_data_dict) == 0:
1100 1101
                continue

B
barrierye 已提交
1102
            # process
B
barriery 已提交
1103
            start = profiler.record("midp#{}_0".format(op_info_prefix))
1104
            midped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1105
                    = self._run_process(preped_data_dict, op_info_prefix, skip_process_dict, logid_dict)
B
barriery 已提交
1106
            end = profiler.record("midp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1107
            midp_time = end - start
1108 1109
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1110
                    self._push_to_output_channels(
B
barriery 已提交
1111 1112
                        data=err_channeldata,
                        channels=output_channels,
B
barriery 已提交
1113 1114
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1115
            except ChannelStopError:
B
barriery 已提交
1116
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1117 1118 1119
                self._finalize(is_thread_op)
                break
            if len(midped_data_dict) == 0:
1120
                continue
1121 1122

            # postprocess
B
barriery 已提交
1123
            start = profiler.record("postp#{}_0".format(op_info_prefix))
1124
            postped_data_dict, err_channeldata_dict \
T
TeslaZhao 已提交
1125
                    = self._run_postprocess(parsed_data_dict, midped_data_dict, op_info_prefix, logid_dict)
B
barriery 已提交
1126
            end = profiler.record("postp#{}_1".format(op_info_prefix))
B
barrierye 已提交
1127
            postp_time = end - start
1128 1129
            try:
                for data_id, err_channeldata in err_channeldata_dict.items():
B
barrierye 已提交
1130
                    self._push_to_output_channels(
B
bug fix  
barrierye 已提交
1131
                        data=err_channeldata,
B
barriery 已提交
1132
                        channels=output_channels,
B
barriery 已提交
1133 1134
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
1135
            except ChannelStopError:
B
barriery 已提交
1136
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1137 1138 1139
                self._finalize(is_thread_op)
                break
            if len(postped_data_dict) == 0:
1140
                continue
1141 1142

            # push data to channel (if run succ)
B
barriery 已提交
1143
            start = int(round(_time() * 1000000))
B
barrierye 已提交
1144
            try:
B
barriery 已提交
1145
                profile_str = profiler.gen_profile_str()
1146
                for data_id, postped_data in postped_data_dict.items():
B
barriery 已提交
1147 1148
                    if self._server_use_profile:
                        sys.stderr.write(profile_str)
1149
                    self._push_to_output_channels(
B
barriery 已提交
1150 1151 1152
                        data=postped_data,
                        channels=output_channels,
                        profile_str=profile_str,
B
barriery 已提交
1153 1154
                        client_need_profile=need_profile_dict[data_id],
                        profile_set=profile_dict[data_id])
B
barrierye 已提交
1155
            except ChannelStopError:
B
barriery 已提交
1156
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1157
                self._finalize(is_thread_op)
B
barrierye 已提交
1158
                break
B
barriery 已提交
1159
            end = int(round(_time() * 1000000))
B
barrierye 已提交
1160
            out_time = end - start
B
barriery 已提交
1161
            if trace_buffer is not None:
B
barrierye 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
                trace_que.append({
                    "name": self.name,
                    "actions": {
                        "in": in_time,
                        "prep": prep_time,
                        "midp": midp_time,
                        "postp": postp_time,
                        "out": out_time,
                    }
                })
                while trace_que:
                    info = trace_que[0]
                    try:
                        trace_buffer.put_nowait(info)
                        trace_que.popleft()
                    except Queue.Full:
                        break
B
barriery 已提交
1179

W
wangjiawei04 已提交
1180
    def _initialize(self, is_thread_op, concurrency_idx):
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        """
        Initialize one OP object in the target function of a thread or porcess.
        Initialize the client object with _client_config and _server_endpoints.
        Create a TimeProfiler per thread or process for recording profiler info.

        Args:
            is_thread_op: True, one op runs in one thread; False, one op runs
                in one process.
            concurrency_idx: process id, Thread mode does not use this param.

        Returns:
            TimeProfiler
        """
B
barriery 已提交
1194 1195 1196 1197 1198 1199
        if is_thread_op:
            with self._for_init_op_lock:
                if not self._succ_init_op:
                    # for the threaded version of Op, each thread cannot get its concurrency_idx
                    self.concurrency_idx = None
                    # init client
W
wangjiawei04 已提交
1200
                    self.client = self.init_client(self._client_config,
W
wangjiawei04 已提交
1201
                                                   self._server_endpoints)
B
barriery 已提交
1202 1203 1204 1205
                    # user defined
                    self.init_op()
                    self._succ_init_op = True
                    self._succ_close_op = False
B
bug fix  
barriery 已提交
1206 1207 1208
        else:
            self.concurrency_idx = concurrency_idx
            # init client
W
wangjiawei04 已提交
1209 1210
            self.client = self.init_client(self._client_config,
                                           self._server_endpoints)
B
bug fix  
barriery 已提交
1211 1212
            # user defined
            self.init_op()
B
barriery 已提交
1213

B
barriery 已提交
1214 1215 1216 1217 1218
        # use a separate TimeProfiler per thread or process
        profiler = TimeProfiler()
        profiler.enable(True)
        return profiler

B
barriery 已提交
1219 1220 1221 1222 1223 1224 1225 1226
    def _finalize(self, is_thread_op):
        if is_thread_op:
            with self._for_close_op_lock:
                if not self._succ_close_op:
                    self._profiler = None
                    self.client = None
                    self._succ_init_op = False
                    self._succ_close_op = True
1227 1228 1229 1230 1231

    def _log(self, info):
        return "{} {}".format(self.name, info)


B
barrierye 已提交
1232
class RequestOp(Op):
1233 1234 1235 1236 1237 1238
    """
    RequestOp is a special Op, for unpacking one request package. If the
    request needs one special unpackaging method, you need to inherit class
    RequestOp and rewrite function unpack_request_package.Notice!!! Class
    RequestOp does not run preprocess, process, postprocess.
    """
B
barrierye 已提交
1239

B
barrierye 已提交
1240
    def __init__(self):
1241 1242 1243
        """
        Initialize the RequestOp
        """
B
barriery 已提交
1244 1245
        # PipelineService.name = "@DAGExecutor"
        super(RequestOp, self).__init__(name="@DAGExecutor", input_ops=[])
B
barrierye 已提交
1246
        # init op
1247
        try:
1248
            self.init_op()
1249
        except Exception as e:
B
barriery 已提交
1250
            _LOGGER.critical("Op(Request) Failed to init: {}".format(e))
1251
            os._exit(-1)
B
barrierye 已提交
1252 1253

    def unpack_request_package(self, request):
T
TeslaZhao 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        """
        Unpack request package by gateway.proto
        Args:
            request: HTTP body, JSON format

        Returns:
            dict_data: json fields in HTTP body
            log_id: log_id
            prod_errcode: None or ProductErrCode.SUCC.value default, otherwise,
                          product errores occured.It is handled in the same way
                          as exception.
            prod_errinfo: "" default 
        """
        dict_data = {}
        log_id = None
        if request is None:
            _LOGGER.critical("request is None")
            raise ValueError("request is None")
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

        for idx, key in enumerate(request.key):
            data = request.value[idx]
            try:
                evaled_data = eval(data)
                if isinstance(evaled_data, np.ndarray):
                    data = evaled_data
            except Exception as e:
                pass
            dict_data[key] = data
T
TeslaZhao 已提交
1282
        log_id = request.logid
1283 1284 1285
        _LOGGER.info("RequestOp unpack one request. log_id:{}, clientip:{} \
            name:{}, method:{}".format(log_id, request.clientip, request.name,
                                       request.method))
T
TeslaZhao 已提交
1286 1287

        return dict_data, log_id, None, ""
B
barrierye 已提交
1288 1289 1290


class ResponseOp(Op):
1291 1292 1293 1294 1295 1296
    """ 
    ResponseOp is a special Op, for packing one response package. If the channeldata 
    needs a special packaging method, you need to inherit class ReponseOp and rewrite
    pack_response_package function. Notice!!! Class ResponseOp does not run preprocess,
    process, postprocess.
    """
B
barrierye 已提交
1297

B
barrierye 已提交
1298
    def __init__(self, input_ops):
1299 1300 1301
        """
        Initialize the ResponseOp
        """
B
barriery 已提交
1302 1303
        super(ResponseOp, self).__init__(
            name="@DAGExecutor", input_ops=input_ops)
B
barrierye 已提交
1304
        # init op
1305
        try:
1306
            self.init_op()
1307
        except Exception as e:
B
barriery 已提交
1308 1309
            _LOGGER.critical("Op(ResponseOp) Failed to init: {}".format(
                e, exc_info=True))
1310
            os._exit(-1)
B
barrierye 已提交
1311 1312

    def pack_response_package(self, channeldata):
T
TeslaZhao 已提交
1313
        """
1314 1315 1316 1317 1318 1319 1320 1321
        Getting channeldata from the last channel, packting the response 
        package serialized by protobuf.  

        Args:
            channeldata: Type ChannelData

        Returns:
            resp: pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1322
        """
B
barrierye 已提交
1323
        resp = pipeline_service_pb2.Response()
T
TeslaZhao 已提交
1324 1325 1326
        error_code = channeldata.error_code
        error_info = ""
        if error_code == ChannelDataErrcode.OK.value:
1327
            # Framework level errors
B
barrierye 已提交
1328 1329 1330 1331
            if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
                feed = channeldata.parse()
                # ndarray to string:
                # https://stackoverflow.com/questions/30167538/convert-a-numpy-ndarray-to-stringor-bytes-and-convert-it-back-to-numpy-ndarray
B
barrierye 已提交
1332
                np.set_printoptions(threshold=sys.maxsize)
B
barrierye 已提交
1333
                for name, var in feed.items():
1334 1335
                    resp.value.append(var.__repr__())
                    resp.key.append(name)
B
barrierye 已提交
1336 1337 1338 1339
            elif channeldata.datatype == ChannelDataType.DICT.value:
                feed = channeldata.parse()
                for name, var in feed.items():
                    if not isinstance(var, str):
T
TeslaZhao 已提交
1340 1341
                        error_code = ChannelDataErrcode.TYPE_ERROR.value
                        error_info = self._log(
B
barrierye 已提交
1342 1343
                            "fetch var type must be str({}).".format(
                                type(var)))
B
barriery 已提交
1344 1345
                        _LOGGER.error("(logid={}) Failed to pack RPC "
                                      "response package: {}".format(
W
wangjiawei04 已提交
1346
                                          channeldata.id, resp.err_msg))
B
barrierye 已提交
1347
                        break
1348 1349
                    resp.value.append(var)
                    resp.key.append(name)
B
barrierye 已提交
1350
            else:
T
TeslaZhao 已提交
1351 1352 1353
                error_code = ChannelDataErrcode.TYPE_ERROR.value
                error_info = self._log("error type({}) in datatype.".format(
                    channeldata.datatype))
B
barriery 已提交
1354
                _LOGGER.error("(logid={}) Failed to pack RPC response"
T
TeslaZhao 已提交
1355
                              " package: {}".format(channeldata.id, error_info))
B
barrierye 已提交
1356
        else:
1357
            # Product level errors
T
TeslaZhao 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
            error_info = channeldata.error_info
            if error_code == ChannelDataErrcode.PRODUCT_ERROR.value:
                #rewrite error_code when product errors occured
                error_code = channeldata.prod_error_code
                error_info = channeldata.prod_error_info

        # pack results
        if error_code is None:
            error_code = 0
        resp.err_no = error_code
        resp.err_msg = error_info

B
barrierye 已提交
1370
        return resp
1371 1372 1373


class VirtualOp(Op):
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    """ 
    To connect 2 ops across levels in dag view, we create virtual ops
    between non-virtual ops, and transfer data only. For examples, 
    the pred ops of F are D & E.In the process of building DAG, we will
    create channels layer by layer according to dag views.Op F is not 
    in the next layer view of [B, E], so we will create a virtual OP 
    'V1' whose pred OP is E. And so on, we create two virtual op 'V2'
    and 'V3', Finally, we find the non-virtual op F. we create 4 channels
    among E, V1, V2, V3 and F, the producer of V1, V2, V3 and F is E.
    
        DAG: [A -> B -> C -> D -> F]
               \-> E ----------/

        DAG view: [[A], [B, E], [C], [D], [F]]
        BUILD DAG: [A -> B -> C -> D -> E -> F]
                     \-> E -> V1-> V2-> V3/
    """
1391 1392 1393

    def __init__(self, name, concurrency=1):
        super(VirtualOp, self).__init__(
B
barrierye 已提交
1394
            name=name, input_ops=None, concurrency=concurrency)
1395 1396 1397
        self._virtual_pred_ops = []

    def add_virtual_pred_op(self, op):
1398 1399 1400 1401 1402 1403 1404 1405 1406
        """
        Add the front op of current vritual op.
        
        Args:
            op: one op object, may be a virtual op or not.

        Returns:
            None
        """
1407 1408
        self._virtual_pred_ops.append(op)

B
barrierye 已提交
1409
    def _actual_pred_op_names(self, op):
1410 1411 1412 1413 1414 1415 1416 1417 1418
        """
        Recursively find the front op which is a non-virtual op.
   
        Args:
            op: one op object
            
        Returns:
            names: the name of non-virtual pred ops.
        """
B
barriery 已提交
1419
        # can use disjoint-set, but it's not necessary
B
barrierye 已提交
1420 1421 1422 1423 1424 1425 1426
        if not isinstance(op, VirtualOp):
            return [op.name]
        names = []
        for x in op._virtual_pred_ops:
            names.extend(self._actual_pred_op_names(x))
        return names

1427
    def add_output_channel(self, channel):
1428 1429 1430 1431 1432 1433 1434 1435 1436
        """
        Adding the output channel of non-virtual pred ops.

        Args:
            channel: one channel.
          
        Returns:
            None.
        """
1437
        if not isinstance(channel, (ThreadChannel, ProcessChannel)):
1438
            _LOGGER.critical(
B
barriery 已提交
1439 1440 1441
                self._log("Failed to add output_channel: output_channel"
                          " must be Channel type, not {}".format(
                              type(channel))))
1442
            os._exit(-1)
1443
        for op in self._virtual_pred_ops:
B
barrierye 已提交
1444 1445
            for op_name in self._actual_pred_op_names(op):
                channel.add_producer(op_name)
1446
        self._outputs.append(channel)
D
dongdaxiang 已提交
1447

1448
    def _run(self, concurrency_idx, input_channel, output_channels, client_type,
1449
             is_thread_op):
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        """
        The target function _run() only transfers data between OPs in one thread
        or process.

        Args:
            concurrency_idx: process id, not avaliable in thread mode.
            input_channel: input channel
            output_channels: output channels
            client_type: no use
            is_thread_op: True, thread mode; False, process mode

        Returns:
            None
        """
1464
        op_info_prefix = "[{}|{}]".format(self.name, concurrency_idx)
B
barrierye 已提交
1465 1466 1467
        log = get_log_func(op_info_prefix)
        tid = threading.current_thread().ident

1468 1469 1470 1471 1472 1473 1474
        batch_generator = self._auto_batching_generator(
            input_channel=input_channel,
            op_name=self.name,
            batch_size=1,
            timeout=None,
            log_func=log)

B
barrierye 已提交
1475 1476
        while True:
            try:
1477
                channeldata_dict_batch = next(batch_generator)
B
barrierye 已提交
1478
            except ChannelStopError:
B
barriery 已提交
1479
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1480
                self._finalize(is_thread_op)
B
barrierye 已提交
1481
                break
D
dongdaxiang 已提交
1482

B
barrierye 已提交
1483
            try:
1484 1485 1486 1487
                for channeldata_dict in channeldata_dict_batch:
                    for name, data in channeldata_dict.items():
                        self._push_to_output_channels(
                            data, channels=output_channels, name=name)
B
barrierye 已提交
1488
            except ChannelStopError:
B
barriery 已提交
1489
                _LOGGER.debug("{} Stop.".format(op_info_prefix))
1490
                self._finalize(is_thread_op)
B
barrierye 已提交
1491
                break