hybrid_service_pipeline_server.py 4.8 KB
Newer Older
B
barriery 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server_gpu.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server_gpu.pipeline import PipelineServer
from paddle_serving_server_gpu.pipeline.proto import pipeline_service_pb2
from paddle_serving_server_gpu.pipeline.channel import ChannelDataEcode
from paddle_serving_server_gpu.pipeline import LocalRpcServiceHandler
import numpy as np
import cv2
import time
import base64
import json
from paddle_serving_app.reader import OCRReader
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
import time
import re
import base64
import logging

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            ResizeByFactor(32, 960), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, input_dicts):
        (_, input_dict), = input_dicts.items()
        data = base64.b64decode(input_dict["image"].encode('utf8'))
        data = np.fromstring(data, np.uint8)
        # Note: class variables(self.var) can only be used in process op mode
        self.im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = self.im.shape
        det_img = self.det_preprocess(self.im)
        _, self.new_h, self.new_w = det_img.shape
        return {"image": det_img}

    def postprocess(self, input_dicts, fetch_dict):
        det_out = fetch_dict["concat_1.tmp_0"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        out_dict = {"dt_boxes": dt_boxes, "image": self.im}
        return out_dict


class RecOp(Op):
    def init_op(self):
        self.ocr_reader = OCRReader()
        self.get_rotate_crop_image = GetRotateCropImage()
        self.sorted_boxes = SortedBoxes()

    def preprocess(self, input_dicts):
        (_, input_dict), = input_dicts.items()
        im = input_dict["image"]
        dt_boxes = input_dict["dt_boxes"]
        dt_boxes = self.sorted_boxes(dt_boxes)
        feed_list = []
        img_list = []
        max_wh_ratio = 0
        for i, dtbox in enumerate(dt_boxes):
            boximg = self.get_rotate_crop_image(im, dt_boxes[i])
            img_list.append(boximg)
            h, w = boximg.shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for img in img_list:
            norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
            feed = {"image": norm_img}
            feed_list.append(feed)
        return feed_list

    def postprocess(self, input_dicts, fetch_dict):
        rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True)
        res_lst = []
        for res in rec_res:
            res_lst.append(res[0])
        res = {"res": str(res_lst)}
        return res


read_op = RequestOp()
det_op = DetOp(
    name="det",
    input_ops=[read_op],
    local_rpc_service_handler=LocalRpcServiceHandler(
        model_config="ocr_det_model",
        workdir="det_workdir",  # defalut: "workdir"
        thread_num=2,  # defalut: 2
        devices="0",  # gpu0. defalut: "" (cpu)
        mem_optim=True,  # defalut: True
        ir_optim=False,  # defalut: False
        available_port_generator=None),  # defalut: None
    concurrency=1)
rec_op = RecOp(
    name="rec",
    input_ops=[det_op],
    server_endpoints=["127.0.0.1:12001"],
    fetch_list=["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"],
    client_config="ocr_rec_client/serving_client_conf.prototxt",
    concurrency=1)
response_op = ResponseOp(input_ops=[rec_op])

server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server('config.yml')
server.run_server()