test_client_multithread.py 2.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guru4elephant 已提交
15
from paddle_serving_client import Client
M
MRXLT 已提交
16 17
import sys
import subprocess
M
MRXLT 已提交
18
from multiprocessing import Pool
M
MRXLT 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
import time


def predict(p_id, p_size, data_list):
    client = Client()
    client.load_client_config(conf_file)
    client.connect(["127.0.0.1:8010"])
    result = []
    for line in data_list:
        group = line.strip().split()
        words = [int(x) for x in group[1:int(group[0])]]
        label = [int(group[-1])]
        feed = {"words": words, "label": label}
        fetch = ["acc", "cost", "prediction"]
        fetch_map = client.predict(feed=feed, fetch=fetch)
        #print("{} {}".format(fetch_map["prediction"][1], label[0]))
        result.append([fetch_map["prediction"][1], label[0]])
    return result


def predict_multi_thread(p_num):
    data_list = []
    with open(data_file) as f:
        for line in f.readlines():
            data_list.append(line)
    start = time.time()
    p = Pool(p_num)
    p_size = len(data_list) / p_num
    result_list = []
    for i in range(p_num):
        result_list.append(
            p.apply_async(predict,
                          [i, p_size, data_list[i * p_size:(i + 1) * p_size]]))
    p.close()
    p.join()
    for i in range(p_num):
        result = result_list[i].get()
        for j in result:
            print("{} {}".format(j[0], j[1]))
    cost = time.time() - start
    print("{} threads cost {}".format(p_num, cost))


if __name__ == '__main__':
    conf_file = sys.argv[1]
    data_file = sys.argv[2]
M
fix bug  
MRXLT 已提交
65
    p_num = int(sys.argv[3])
M
MRXLT 已提交
66
    predict_multi_thread(p_num)