Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Quantum
提交
99dee56a
Q
Quantum
项目概览
PaddlePaddle
/
Quantum
大约 1 年 前同步成功
通知
20
Star
492
Fork
166
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
5
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Q
Quantum
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
5
Issue
5
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99dee56a
编写于
11月 24, 2021
作者:
Q
QuLeaf
提交者:
GitHub
11月 24, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #28 from yangguohao/task81
【PaddlePaddle Hackathon】81 时间演化电路的性能优化
上级
34bb545c
cc9c9e71
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
149 addition
and
4 deletion
+149
-4
documents/单测文件.py
documents/单测文件.py
+80
-0
paddle_quantum/trotter.py
paddle_quantum/trotter.py
+69
-4
未找到文件。
documents/单测文件.py
浏览文件 @
99dee56a
from
paddle_quantum.circuit
import
UAnsatz
from
paddle_quantum.circuit
import
UAnsatz
from
paddle_quantum.utils
import
Hamiltonian
,
NKron
,
gate_fidelity
,
SpinOps
,
dagger
from
paddle_quantum.trotter
import
construct_trotter_circuit
,
get_1d_heisenberg_hamiltonian
from
paddle
import
matmul
,
transpose
,
trace
import
paddle
import
numpy
as
np
import
scipy
from
scipy
import
linalg
import
matplotlib.pyplot
as
plt
def
get_evolve_op
(
t
,
h
):
return
scipy
.
linalg
.
expm
(
-
1j
*
t
*
h
.
construct_h_matrix
())
def
test
(
h
,
n
):
t
=
2
r
=
1
cir
=
UAnsatz
(
n
)
construct_trotter_circuit
(
cir
,
h
,
tau
=
t
/
r
,
steps
=
r
)
print
(
'系统的哈密顿量为:'
)
print
(
h
)
print
(
'电路的酉矩阵与正确的演化算符之间的保真度为:%.2f'
%
gate_fidelity
(
cir
.
U
.
numpy
(),
get_evolve_op
(
t
,
h
)))
print
(
cir
)
print
(
'--------------test1------------'
)
h1
=
get_1d_heisenberg_hamiltonian
(
length
=
2
,
j_x
=
1
,
j_y
=
1
,
j_z
=
2
,
h_z
=
2
*
np
.
random
.
rand
(
2
)
-
1
,
periodic_boundary_condition
=
False
)
#
test
(
h1
,
2
)
print
(
'--------------test2------------'
)
h2
=
Hamiltonian
([[
1.
,
'X0, X1'
],
[
1.
,
'Z2, Z3'
],
[
1.
,
'Y0, Y1'
],
[
1.
,
'X1, X2'
],
[
1.
,
'Y2, Y3'
],
[
1.
,
'Z0, Z1'
]])
test
(
h2
,
4
)
print
(
'--------------test3------------'
)
h3
=
Hamiltonian
([
[
1
,
'Y0, Y1'
],
[
1
,
'X1, X0'
],[
1
,
'X0, Y1'
],[
1
,
'Z0, Z1'
]])
test
(
h3
,
2
)
"""
运行耗时: 130毫秒
--------------test1------------
([1.0, 1.0, 2.0, 0.8812020131972615, 0.7453483155128535], ['XX', 'YY', 'ZZ', 'Z', 'Z'], [[0, 1], [0, 1], [0, 1], [0], [1]])
系统的哈密顿量为:
1.0 X0, X1
1.0 Y0, Y1
2.0 Z0, Z1
0.8812020131972615 Z0
0.7453483155128535 Z1
电路的酉矩阵与正确的演化算符之间的保真度为:0.99
---------------x----Rz(6.429)----*-----------------x----Rz(-1.57)----Rz(3.525)--
| | |
--Rz(1.571)----*----Ry(-3.85)----x----Ry(3.854)----*----Rz(2.981)---------------
--------------test2------------
([1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['XX', 'YY', 'ZZ', 'ZZ', 'XX', 'YY'], [[0, 1], [0, 1], [0, 1], [2, 3], [1, 2], [2, 3]])
系统的哈密顿量为:
1.0 X0, X1
1.0 Z2, Z3
1.0 Y0, Y1
1.0 X1, X2
1.0 Y2, Y3
1.0 Z0, Z1
电路的酉矩阵与正确的演化算符之间的保真度为:0.51
-------------------x--------Rz(2.429)--------*---------------------x----Rz(-1.57)-------------------------------------------------------------------------------
| | |
--Rz(1.571)--------*--------Ry(-3.85)--------x--------Ry(3.854)----*--------H--------*-----------------*----H---------------------------------------------------
| |
------*-------------------------*------------H---------------------------------------x----Rz(4.000)----x----H----Rx(1.571)----*-----------------*----Rx(-1.57)--
| | | |
------x--------Rz(4.000)--------x--------Rx(1.571)----------------------------------------------------------------------------x----Rz(4.000)----x----Rx(-1.57)--
--------------test3------------
([1.0, 1.0, 1.0, 1.0], ['YY', 'XX', 'ZZ', 'XY'], [[0, 1], [1, 0], [0, 1], [0, 1]])
系统的哈密顿量为:
1.0 Y0, Y1
1.0 X1, X0
1.0 X0, Y1
1.0 Z0, Z1
电路的酉矩阵与正确的演化算符之间的保真度为:0.46
---------------x----Rz(2.429)----*-----------------x----Rz(-1.57)----H----*-----------------*--------H------
| | | | |
--Rz(1.571)----*----Ry(-3.85)----x----Ry(3.854)----*----Rx(1.571)---------x----Rz(4.000)----x----Rx(-1.57)--
"""
from
paddle_quantum.utils
import
partial_trace
,
plot_state_in_bloch_sphere
,
partial_trace_discontiguous
,
NKron
,
plot_n_qubit_state_in_bloch_sphere
from
paddle_quantum.utils
import
partial_trace
,
plot_state_in_bloch_sphere
,
partial_trace_discontiguous
,
NKron
,
plot_n_qubit_state_in_bloch_sphere
from
mpl_toolkits.mplot3d
import
Axes3D
from
mpl_toolkits.mplot3d
import
Axes3D
import
numpy
as
np
import
numpy
as
np
...
@@ -19,3 +98,4 @@ state = rho
...
@@ -19,3 +98,4 @@ state = rho
plot_n_qubit_state_in_bloch_sphere
(
state
,
show_arrow
=
True
)
plot_n_qubit_state_in_bloch_sphere
(
state
,
show_arrow
=
True
)
plot_n_qubit_state_in_bloch_sphere
(
cir2
.
run_density_matrix
(),
show_arrow
=
True
)
plot_n_qubit_state_in_bloch_sphere
(
cir2
.
run_density_matrix
(),
show_arrow
=
True
)
plot_n_qubit_state_in_bloch_sphere
(
cir1
.
run_state_vector
(),
show_arrow
=
True
)
plot_n_qubit_state_in_bloch_sphere
(
cir1
.
run_state_vector
(),
show_arrow
=
True
)
paddle_quantum/trotter.py
浏览文件 @
99dee56a
...
@@ -18,6 +18,7 @@ Trotter Hamiltonian time evolution circuit module
...
@@ -18,6 +18,7 @@ Trotter Hamiltonian time evolution circuit module
from
paddle_quantum.utils
import
Hamiltonian
from
paddle_quantum.utils
import
Hamiltonian
from
paddle_quantum.circuit
import
UAnsatz
from
paddle_quantum.circuit
import
UAnsatz
from
collections
import
defaultdict
import
warnings
import
warnings
import
numpy
as
np
import
numpy
as
np
import
re
import
re
...
@@ -257,13 +258,54 @@ def __add_first_order_trotter_block(circuit, tau, grouped_hamiltonian, reverse=F
...
@@ -257,13 +258,54 @@ def __add_first_order_trotter_block(circuit, tau, grouped_hamiltonian, reverse=F
if
not
reverse
:
if
not
reverse
:
for
hamiltonian
in
grouped_hamiltonian
:
for
hamiltonian
in
grouped_hamiltonian
:
assert
isinstance
(
hamiltonian
,
Hamiltonian
)
assert
isinstance
(
hamiltonian
,
Hamiltonian
)
#将原哈密顿量中相同site的XX,YY,ZZ组合到一起
grouped_hamiltonian
=
[]
coeffs
,
pauli_words
,
sites
=
hamiltonian
.
decompose_with_sites
()
grouped_terms_indices
=
[]
left_over_terms_indices
=
[]
d
=
defaultdict
(
list
)
#合并相同site的XX,YY,ZZ
for
term_index
in
range
(
len
(
coeffs
)):
site
=
sites
[
term_index
]
pauli_word
=
pauli_words
[
term_index
]
for
pauli
in
[
'XX'
,
'YY'
,
'ZZ'
]:
assert
isinstance
(
pauli_word
,
str
),
"Each pauli word should be a string type"
if
(
pauli_word
==
pauli
or
pauli_word
==
pauli
.
lower
()):
key
=
tuple
(
sorted
(
site
))
d
[
key
].
append
((
pauli
,
term_index
))
if
len
(
d
[
key
])
==
3
:
terms_indices_to_be_grouped
=
[
x
[
1
]
for
x
in
d
[
key
]]
grouped_terms_indices
.
extend
(
terms_indices_to_be_grouped
)
grouped_hamiltonian
.
append
(
hamiltonian
[
terms_indices_to_be_grouped
])
#其他的剩余项
for
term_index
in
range
(
len
(
coeffs
)):
if
term_index
not
in
grouped_terms_indices
:
left_over_terms_indices
.
append
(
term_index
)
if
len
(
left_over_terms_indices
):
for
term_index
in
left_over_terms_indices
:
grouped_hamiltonian
.
append
(
hamiltonian
[
term_index
])
#得到新的哈密顿量
res
=
grouped_hamiltonian
[
0
]
for
i
in
range
(
1
,
len
(
grouped_hamiltonian
)):
res
+=
grouped_hamiltonian
[
i
]
hamiltonian
=
res
# decompose the Hamiltonian into 3 lists
# decompose the Hamiltonian into 3 lists
coeffs
,
pauli_words
,
sites
=
hamiltonian
.
decompose_with_sites
()
coeffs
,
pauli_words
,
sites
=
hamiltonian
.
decompose_with_sites
()
# apply rotational gate of each term
# apply rotational gate of each term
for
term_index
in
range
(
len
(
coeffs
)):
term_index
=
0
# get the sorted pauli_word and site (an array of qubit indices) according to their qubit indices
while
term_index
<
len
(
coeffs
):
pauli_word
,
site
=
__sort_pauli_word
(
pauli_words
[
term_index
],
sites
[
term_index
])
if
term_index
+
3
<=
len
(
coeffs
)
and
\
add_n_pauli_gate
(
circuit
,
2
*
tau
*
coeffs
[
term_index
],
pauli_word
,
site
)
len
(
set
(
y
for
x
in
sites
[
term_index
:
term_index
+
3
]
for
y
in
x
))
==
2
and
\
set
(
pauli_words
[
term_index
:
term_index
+
3
])
==
{
'XX'
,
'YY'
,
'ZZ'
}:
optimal_circuit
(
circuit
,[
tau
*
i
for
i
in
coeffs
[
term_index
:
term_index
+
3
]],
sites
[
term_index
])
term_index
+=
3
else
:
# get the sorted pauli_word and site (an array of qubit indices) according to their qubit indices
pauli_word
,
site
=
__sort_pauli_word
(
pauli_words
[
term_index
],
sites
[
term_index
])
add_n_pauli_gate
(
circuit
,
2
*
tau
*
coeffs
[
term_index
],
pauli_word
,
site
)
term_index
+=
1
# in the reverse mode, if the Hamiltonian is a single element list, reverse the order its each term
# in the reverse mode, if the Hamiltonian is a single element list, reverse the order its each term
else
:
else
:
if
len
(
grouped_hamiltonian
)
==
1
:
if
len
(
grouped_hamiltonian
)
==
1
:
...
@@ -361,7 +403,30 @@ def add_n_pauli_gate(circuit, theta, pauli_word, which_qubits):
...
@@ -361,7 +403,30 @@ def add_n_pauli_gate(circuit, theta, pauli_word, which_qubits):
circuit
.
h
(
which_qubits
[
qubit_index
])
circuit
.
h
(
which_qubits
[
qubit_index
])
elif
re
.
match
(
r
'Y'
,
pauli_word
[
qubit_index
],
flags
=
re
.
I
):
elif
re
.
match
(
r
'Y'
,
pauli_word
[
qubit_index
],
flags
=
re
.
I
):
circuit
.
rx
(
-
PI
/
2
,
which_qubits
[
qubit_index
])
circuit
.
rx
(
-
PI
/
2
,
which_qubits
[
qubit_index
])
def
optimal_circuit
(
circuit
,
theta
,
which_qubits
):
r
""" 添加一个优化电路,哈密顿量为'XXYYZZ'`
Args:
circuit (UAnsatz): 需要添加门的电路
theta list(tensor or float): 旋转角度需要传入三个参数
which_qubits (list or np.ndarray): ``pauli_word`` 中的每个算符所作用的量子比特编号
"""
p
=
np
.
pi
/
2
x
,
y
,
z
=
theta
alpha
=
paddle
.
to_tensor
(
3
*
p
-
4
*
x
*
p
+
2
*
x
,
dtype
=
'float64'
)
beta
=
paddle
.
to_tensor
(
-
3
*
p
+
4
*
y
*
p
-
2
*
y
,
dtype
=
'float64'
)
gamma
=
paddle
.
to_tensor
(
2
*
z
-
p
,
dtype
=
'float64'
)
which_qubits
.
sort
()
a
,
b
=
which_qubits
circuit
.
rz
(
paddle
.
to_tensor
(
p
,
dtype
=
'float64'
),
b
)
circuit
.
cnot
([
b
,
a
])
circuit
.
rz
(
gamma
,
a
)
circuit
.
ry
(
alpha
,
b
)
circuit
.
cnot
([
a
,
b
])
circuit
.
ry
(
beta
,
b
)
circuit
.
cnot
([
b
,
a
])
circuit
.
rz
(
paddle
.
to_tensor
(
-
p
,
dtype
=
'float64'
),
a
)
def
__group_hamiltonian_xyz
(
hamiltonian
):
def
__group_hamiltonian_xyz
(
hamiltonian
):
r
""" 将哈密顿量拆分成 X、Y、Z 以及剩余项四个部分,并返回由他们组成的列表
r
""" 将哈密顿量拆分成 X、Y、Z 以及剩余项四个部分,并返回由他们组成的列表
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录