VQSVD_EN.ipynb 92.2 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Variational Quantum Singular Value Decomposition\n",
    "\n",
    "<em> Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. </em>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Overview\n",
    "\n",
    "In this tutorial, we will go through the concept of classical singular value decomposition (SVD) and the quantum neural network (QNN) version of variational quantum singular value decomposition (VQSVD) [1]. The tutorial consists of the following two parts: \n",
    "- Decompose a randomly generated $8\\times8$ complex matrix; \n",
    "- Apply SVD on image compression."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Background\n",
    "\n",
    "Singular value decomposition (SVD) has many applications, including principal component analysis (PCA), solving linear equations and recommender systems. The main task is formulated as following:\n",
    "> Given a complex matrix $M \\in \\mathbb{C}^{m \\times n}$, find the decomposition in form $M = UDV^\\dagger$, where $U_{m\\times m}$ and $V^\\dagger_{n\\times n}$ are unitary matrices, which satisfy the property $UU^\\dagger = VV^\\dagger = I$.\n",
    "\n",
    "- The column vectors $|u_j\\rangle$ of the unitary matrix $U$ are called left singular vectors $\\{|u_j\\rangle\\}_{j=1}^{m}$ form an orthonormal basis. These column vectors are the eigenvectors of the matrix $MM^\\dagger$.\n",
    "- Similarly, the column vectors $\\{|v_j\\rangle\\}_{j=1}^{n}$ of the unitary matrix $V$ are the eigenvectors of $M^\\dagger M$ and form an orthonormal basis.\n",
    "- The diagonal elements of the matrix $D_{m\\times n}$ are singular values $d_j$ arranged in a descending order.\n",
    "\n",
    "For the convenience, we assume that the $M$ appearing below are all square matrices. Let's first look at an example: \n",
    "\n",
    "$$\n",
    "M = 2*X\\otimes Z + 6*Z\\otimes X + 3*I\\otimes I = \n",
    "\\begin{bmatrix} \n",
    "3 &6 &2 &0 \\\\\n",
    "6 &3 &0 &-2 \\\\\n",
    "2 &0 &3 &-6 \\\\\n",
    "0 &-2 &-6 &3 \n",
    "\\end{bmatrix}, \\tag{1}\n",
    "$$\n",
    "\n",
    "Then the singular value decomposition of the matrix can be expressed as:\n",
    "\n",
    "$$\n",
    "M = UDV^\\dagger = \n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix} \n",
    "-1 &-1 &1 &1 \\\\\n",
    "-1 &-1 &-1 &-1 \\\\\n",
    "-1 &1 &-1 &1 \\\\\n",
    "1 &-1 &-1 &1 \n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix} \n",
    "11 &0 &0 &0 \\\\\n",
    "0 &7 &0 &0 \\\\\n",
    "0 &0 &5 &0 \\\\\n",
    "0 &0 &0 &1 \n",
    "\\end{bmatrix}\n",
    "\\frac{1}{2}\n",
    "\\begin{bmatrix} \n",
    "-1 &-1 &-1 &-1 \\\\\n",
    "-1 &-1 &1 &1 \\\\\n",
    "-1 &1 &1 &-1 \\\\\n",
    "1 &-1 &1 &-1 \n",
    "\\end{bmatrix}. \\tag{2}\n",
    "$$\n",
    "\n",
    "Import packages."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.008567Z",
     "start_time": "2021-03-09T03:44:29.796997Z"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from numpy import pi as PI\n",
    "from matplotlib import pyplot as plt\n",
    "from scipy.stats import unitary_group\n",
    "from scipy.linalg import norm\n",
    "\n",
    "import paddle\n",
    "from paddle_quantum.ansatz import Circuit\n",
    "from paddle_quantum.linalg import dagger"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Draw the learning curve in the optimization process\n",
    "def loss_plot(loss):\n",
    "    '''\n",
    "    loss is a list, this function plots loss over iteration\n",
    "    '''\n",
    "    plt.plot(list(range(1, len(loss)+1)), loss)\n",
    "    plt.xlabel('iteration')\n",
    "    plt.ylabel('loss')\n",
    "    plt.title('Loss Over Iteration')\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Classical Singular Value Decomposition\n",
    "\n",
    "With the above mathematical definition, one can realize SVD numerically through NumPy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.056721Z",
     "start_time": "2021-03-09T03:44:34.012222Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The matrix M we want to decompose is: \n",
      "[[ 3.+0.j  6.+0.j  2.+0.j  0.+0.j]\n",
      " [ 6.+0.j  3.+0.j  0.+0.j -2.+0.j]\n",
      " [ 2.+0.j  0.+0.j  3.+0.j -6.+0.j]\n",
      " [ 0.+0.j -2.+0.j -6.+0.j  3.+0.j]]\n"
     ]
    }
   ],
   "source": [
    "# Generate matrix M\n",
    "def M_generator():\n",
    "    I = np.array([[1, 0], [0, 1]])\n",
    "    Z = np.array([[1, 0], [0, -1]])\n",
    "    X = np.array([[0, 1], [1, 0]])\n",
    "    Y = np.array([[0, -1j], [1j, 0]])\n",
    "    M = 2 *np.kron(X, Z) + 6 * np.kron(Z, X) + 3 * np.kron(I, I)\n",
    "    return M.astype('complex64')\n",
    "\n",
    "print('The matrix M we want to decompose is: ')\n",
    "print(M_generator())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.093725Z",
     "start_time": "2021-03-09T03:44:34.063353Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The singular values of the matrix from large to small are:\n",
      "[11.  7.  5.  1.]\n",
      "The decomposed unitary matrix U is:\n",
      "[[-0.5+0.j -0.5+0.j  0.5+0.j  0.5+0.j]\n",
      " [-0.5+0.j -0.5+0.j -0.5+0.j -0.5+0.j]\n",
      " [-0.5+0.j  0.5+0.j -0.5+0.j  0.5+0.j]\n",
      " [ 0.5+0.j -0.5+0.j -0.5+0.j  0.5+0.j]]\n",
      "The decomposed unitary matrix V_dagger is:\n",
      "[[-0.5+0.j -0.5+0.j -0.5+0.j  0.5+0.j]\n",
      " [-0.5+0.j -0.5+0.j  0.5+0.j -0.5+0.j]\n",
      " [-0.5+0.j  0.5+0.j  0.5+0.j  0.5+0.j]\n",
      " [-0.5+0.j  0.5+0.j -0.5+0.j -0.5+0.j]]\n"
     ]
    }
   ],
   "source": [
    "# We only need the following line of code to complete SVD\n",
    "U, D, V_dagger = np.linalg.svd(M_generator(), full_matrices=True)\n",
    "\n",
    "\n",
    "# Print decomposition results\n",
    "print(\"The singular values of the matrix from large to small are:\")\n",
    "print(D)\n",
    "print(\"The decomposed unitary matrix U is:\")\n",
    "print(U)\n",
    "print(\"The decomposed unitary matrix V_dagger is:\")\n",
    "print(V_dagger)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.112670Z",
     "start_time": "2021-03-09T03:44:34.098847Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[ 3.+0.j  6.+0.j  2.+0.j  0.+0.j]\n",
      " [ 6.+0.j  3.+0.j  0.+0.j -2.+0.j]\n",
      " [ 2.+0.j  0.+0.j  3.+0.j -6.+0.j]\n",
      " [ 0.+0.j -2.+0.j -6.+0.j  3.+0.j]]\n"
     ]
    }
   ],
   "source": [
    "# Then assemble it back, can we restore the original matrix?\n",
    "M_reconst = np.matmul(U, np.matmul(np.diag(D), V_dagger))\n",
    "print(M_reconst)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Surely, we can be restored the original matrix $M$! One can further modify the matrix, see what happens if it is not a square matrix.\n",
    "\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Quantum Singular Value Decomposition\n",
    "\n",
    "Next, let's take a look at what the quantum version of singular value decomposition is all about. In summary, we transform the problem of matrix factorization into an optimization problem with the variational principle of singular values. Specifically, this is achieved through the following four steps:\n",
    "\n",
    "- Prepare an orthonormal basis $\\{|\\psi_j\\rangle\\}$, one can take the computational basis $\\{ |000\\rangle, |001\\rangle,\\cdots |111\\rangle\\}$ (this is in the case of 3 qubits)\n",
    "- Prepare two parameterized quantum neural networks $U(\\theta)$ and $V(\\phi)$ to learn left/right singular vectors respectively\n",
    "- Use quantum neural network to estimate singular values $m_j = \\text{Re}\\langle\\psi_j|U(\\theta)^{\\dagger} M V(\\phi)|\\psi_j\\rangle$\n",
    "- Design the loss function $\\mathcal{L}(\\theta)$ and use PaddlePaddle Deep Learning framework to maximize the following quantity, \n",
    "\n",
    "$$\n",
    "L(\\theta,\\phi) = \\sum_{j=1}^T q_j\\times \\text{Re} \\langle\\psi_j|U(\\theta)^{\\dagger} MV(\\phi)|\\psi_j\\rangle. \\tag{3}\n",
    "$$\n",
    "\n",
    "Where $q_1>\\cdots>q_T>0$ is the adjustable weights (hyperparameter), and $T$ represents the rank we want to learn or the total number of singular values to be learned.\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Case 1: Decompose a randomly generated $8\\times8$ complex matrix\n",
    "\n",
    "Then we look at a specific example, which can better explain the overall process."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.132465Z",
     "start_time": "2021-03-09T03:44:34.116446Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The matrix M we want to decompose is:\n",
      "[[6.+1.j 3.+9.j 7.+3.j 4.+7.j 6.+6.j 9.+8.j 2.+7.j 6.+4.j]\n",
      " [7.+1.j 4.+4.j 3.+7.j 7.+9.j 7.+8.j 2.+8.j 5.+0.j 4.+8.j]\n",
      " [1.+6.j 7.+8.j 5.+7.j 1.+0.j 4.+7.j 0.+7.j 9.+2.j 5.+0.j]\n",
      " [8.+7.j 0.+2.j 9.+2.j 2.+0.j 6.+4.j 3.+9.j 8.+6.j 2.+9.j]\n",
      " [4.+8.j 2.+6.j 6.+8.j 4.+7.j 8.+1.j 6.+0.j 1.+6.j 3.+6.j]\n",
      " [8.+7.j 1.+4.j 9.+2.j 8.+7.j 9.+5.j 4.+2.j 1.+0.j 3.+2.j]\n",
      " [6.+4.j 7.+2.j 2.+0.j 0.+4.j 3.+9.j 1.+6.j 7.+6.j 3.+8.j]\n",
      " [1.+9.j 5.+9.j 5.+2.j 9.+6.j 3.+0.j 5.+3.j 1.+3.j 9.+4.j]]\n",
      "The singular values of the matrix M are:\n",
      "[54.83484985 19.18141073 14.98866247 11.61419557 10.15927045  7.60223249\n",
      "  5.81040539  3.30116001]\n"
     ]
    }
   ],
   "source": [
    "# First fix the random seed, in order to reproduce the results at any time\n",
    "np.random.seed(42)\n",
    "\n",
    "# Set the number of qubits, which determines the dimension of the Hilbert space\n",
    "N = 3\n",
    "\n",
    "# Make a random matrix generator\n",
    "def random_M_generator():\n",
    "    M = np.random.randint(10, size = (2**N, 2**N)) + 1j*np.random.randint(10, size = (2**N, 2**N))\n",
    "    return M\n",
    "\n",
    "M = random_M_generator()\n",
    "M_err = np.copy(M)\n",
    "\n",
    "\n",
    "# Output the matrix M\n",
    "print('The matrix M we want to decompose is:')\n",
    "print(M)\n",
    "\n",
    "# Apply SVD and record the exact singular values\n",
    "U, D, V_dagger = np.linalg.svd(M, full_matrices=True)\n",
    "print(\"The singular values of the matrix M are:\")\n",
    "print(D)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.147570Z",
     "start_time": "2021-03-09T03:44:34.138265Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The selected weight is:\n",
      "[24.+0.j 21.+0.j 18.+0.j 15.+0.j 12.+0.j  9.+0.j  6.+0.j  3.+0.j]\n"
     ]
    }
   ],
   "source": [
    "# Hyperparameter settings\n",
    "N = 3       # Number of qubits\n",
    "T = 8       # Set the number of rank you want to learn\n",
    "ITR = 100   # Number of iterations\n",
    "LR = 0.02   # Learning rate\n",
    "SEED = 14   # Random seed\n",
    "\n",
    "# Set the learning weight \n",
    "weight = np.arange(3 * T, 0, -3).astype('complex128')\n",
    "print('The selected weight is:')\n",
    "print(weight)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We design QNN with the following structure:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:44:34.245692Z",
     "start_time": "2021-03-09T03:44:34.226859Z"
    }
   },
   "outputs": [],
   "source": [
    "# Set circuit parameters\n",
    "cir_depth = 20              # circuit depth\n",
    "block_len = 2               # length of each block"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define quantum neural network\n",
    "def U_theta() -> Circuit:\n",
    "\n",
    "    # Initialize the network with Circuit\n",
    "    cir = Circuit(N)\n",
    "    \n",
    "    # Build a hierarchy:\n",
    "    for _ in range(cir_depth):\n",
    "        cir.ry()\n",
    "        cir.rz()\n",
    "        cir.cnot()\n",
    "\n",
    "    return cir"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Then we complete the main part of the algorithm:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:46:12.944634Z",
     "start_time": "2021-03-09T03:44:50.626213Z"
    }
   },
   "outputs": [],
   "source": [
    "class NET(paddle.nn.Layer):\n",
    "    def __init__(self, matrix: np.ndarray, weights: np.ndarray) -> None:\n",
    "        super(NET, self).__init__()\n",
    "        \n",
    "        # Create the parameter theta for learning U\n",
    "        self.cir_U = U_theta()\n",
    "        \n",
    "        # Create a parameter phi to learn V_dagger\n",
    "        self.cir_V = U_theta()\n",
    "        \n",
    "        # Convert Numpy array to Tensor supported in Paddle\n",
    "        self.M = paddle.to_tensor(matrix)\n",
    "        self.weight = paddle.to_tensor(weights)\n",
    "\n",
    "    # Define loss function and forward propagation mechanism\n",
    "    def forward(self):\n",
    "        \n",
    "        # Get the unitary matrix representation of the quantum neural network\n",
    "        U = self.cir_U.unitary_matrix()\n",
    "        U_dagger = dagger(U)\n",
    "        \n",
    "        \n",
    "        V = self.cir_V.unitary_matrix()\n",
    "        V_dagger = dagger(V)\n",
    "        \n",
    "        # Initialize the loss function and singular value memory\n",
    "        loss = 0\n",
    "        singular_values = np.zeros(T)\n",
    "        \n",
    "        # Define loss function\n",
    "        for i in range(T):\n",
    "            loss -= paddle.real(self.weight)[i] * paddle.real(U_dagger @ self.M @ V)[i][i]\n",
    "            singular_values[i] = paddle.real(U_dagger @ self.M @ V)[i][i].numpy()\n",
    "        \n",
    "        # Function returns two matrices U and V_dagger, learned singular values and loss function\n",
    "        return U, V_dagger, loss, singular_values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "iter: 0 loss: -43.6754\n",
      "iter: 10 loss: -1533.6699\n",
      "iter: 20 loss: -2002.1223\n",
      "iter: 30 loss: -2137.2044\n",
      "iter: 40 loss: -2200.9439\n",
      "iter: 50 loss: -2267.5643\n",
      "iter: 60 loss: -2329.0521\n",
      "iter: 70 loss: -2359.0386\n",
      "iter: 80 loss: -2367.3676\n",
      "iter: 90 loss: -2372.0702\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEWCAYAAACjYXoKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnyklEQVR4nO3deXxddZ3/8dfn3ux7m6RLkq50gS5QMCBFZBBQiqIFFcUNUGcYZsR9VBBm1PkN88BlRnHcBhVFRJABWWQXBVmEQgqldKE0Ld2TNt2TLtnu5/fHOUlvS1rS3Htzk3vfz8fjPnLv95x7z+fktPed8/2exdwdERGRRETSXYCIiAx/ChMREUmYwkRERBKmMBERkYQpTEREJGEKExERSZjCRESOipm1mdnkdNchQ4vCRIYdM1tjZuekadmnmdlfzKzVzHaZ2R/NbMYgLr933c3sMjN7OsXLe8LM/j6+zd1L3H11Kpcrw4/CRKSfzGwu8ChwL1ADTAJeBp5J9l/qFkjp/08zy0nl50t2UZhIxjCzfDP7gZltCh8/MLP8cFqVmd1vZjvNbLuZPdXzZW1mXzOzjeHexgozO/swi/gO8Bt3v8HdW919u7tfCzwHfDP8rOVmdn5cTTlm1mJmJ4WvTzWzv4V1vGxmZ8bN+4SZXWdmzwB7gcMGlJkdB/wMmBt2O+2M+x18z8zWmdlmM/uZmRWG0840sw3h+jYDvzKzEeHvpcXMdoTP68L5rwPeDvwoXMaPwnY3synh83Iz+034/rVmdm3c7/UyM3s6rGeHmb1uZuf1e4PKsKIwkUxyDXAqMAc4ATgFuDac9mVgA1ANjAa+DriZTQeuBE5291LgXGDNoR9sZkXAacD/9bHcO4B3hs9vAz4SN+1cYKu7v2hmtcADwH8AI4F/Ae4ys+q4+T8BXA6UAmsPt6Luvhy4Ang27HaqCCddD0wLfwdTgFrg3+LeOiZc9oRwORHgV+Hr8cA+4EfhMq4BngKuDJdxZR+l/A9QThB8fwdcAnwybvpbgRVAFUEY/9LM7HDrJcOXwkQyyceAf3f3Le7eAnyL4MsZoBMYC0xw9053f8qDC9N1A/nADDPLdfc17r6qj88eSfD/pamPaU0EX5YAvwPeF4YPwEcJAgbg48CD7v6gu8fc/U9AA/DuuM/6tbsvdfcud+88mpUPv6QvB74Y7jW1Av8JXBw3Wwz4hru3u/s+d9/m7ne5+95w/usIQqE/y4uGn311uKe2BvgvDvzOAda6+8/dvRu4mWAbjD6a9ZLhQWEimaSGg/+aXxu2AXwXaAQeNbPVZnYVgLs3Al8g6KbaYma3m1kNb7SD4It4bB/TxgJb4z5vOfDeMFDeRxAwEPz1f1HYxbUz7Jo6/ZDPXH80K3yIaqAIWBj3+Q+H7T1a3H1/zwszKzKz/w27qHYDTwIVYVC8mSoglzf+zmvjXjf3PHH3veHTkqNYJxkmFCaSSTYRfGH3GB+2Ef7l/GV3n0zwBf+lnrERd/+du58evteBbx/6we6+B3gWuKiP5X4I+HPc656urvnAsjBgIAiKW9y9Iu5R7O7Xxy/qKNb30Hm3EnRTzYz7/HJ3LznCe74MTAfe6u5lwBlhux1m/kOX18kbf+cbj2IdJEMoTGS4yjWzgrhHDsGX+LVmVm1mVQRjBb8FMLPzzWxK2BW0i6B7K2Zm083srHCgfj/Bl3HsMMu8CrjUzD5nZqXh4PV/AHMJutR63A68C/gnDuyVENbyXjM718yiYd1n9gx4D8BmoM7M8gDcPQb8HPi+mY0K17vWzM49wmeUEqzzTjMbCXyjj2X0eSBA2HV1B3Bd+PuYAHwpXE/JMgoTGa4eJPgS7Hl8k2BguwFYDLwCvBi2AUwFHgPaCPYwfuLujxOMl1xP8Fd2MzAKuLqvBbr70wQD6u8nGCdZC5wInO7uK+PmawqXcRrw+7j29QR7K18HWgj2VL7CwP8f/gVYCjSb2daw7WsE3XnPhd1WjxHseRzOD4BCgvV/jqBbLN4NwAfDo7F+2Mf7PwvsAVYDTxOE500DWhsZ1kw3xxIRkURpz0RERBKmMBERkYQpTEREJGEKExERSVjWXuitqqrKJ06cmO4yRESGlYULF2519+pD27M2TCZOnEhDQ0O6yxARGVbMrM9rxqmbS0REEpYxYWJm88LLhzf2XHdJREQGR0aESXhRuh8D5wEzgI/YIN79TkQk22VEmBDct6LR3Ve7ewfBtZHmp7kmEZGskSlhUsvBl+7ewMGXwRYRkRTKlDDpFzO73MwazKyhpaUl3eWIiGSMTAmTjcC4uNd19HFPBXe/0d3r3b2+uvoNh0mLiMgAZUqYvABMNbNJ4b0dLgbuS8WC7nlpI7cuOOytuUVEslJGhIm7dwFXAo8Q3DL1Dndfmopl3b+4iVueVZiIiMTLmDPg3f1BghsmpVRVSR4vb9iZ6sWIiAwrGbFnMpgqS/LYvqeDWEw3FRMR6aEwOUqVxfl0x5xd+zrTXYqIyJChMDlKlSV5AGzb057mSkREhg6FyVGqKskHYGtbR5orEREZOhQmR6l3z0RhIiLSS2FylCqLgz0TdXOJiBygMDlKI4pyMVM3l4hIPIXJUcqJRhhRlMe2Nu2ZiIj0UJgMQGVxnsZMRETiKEwGoLIkT2MmIiJxFCYDUFmSrz0TEZE4CpMBqCrOY6vGTEREeilMBqCqJJ/d+7vo6IqluxQRkSFBYTIAleFZ8Nv3qKtLRAQUJgPScxa8urpERAIKkwGo6r3Yo/ZMRERAYTIgvZdU0Z6JiAigMBkQXexRRORgCpMBKMnPIS8nwladuCgiAihMBsTMqNIlVUREeilMBig4C157JiIioDAZsOD6XNozEREBhcmAVRbr+lwiIj0UJgNUVRJcn8vd012KiEjaKUwGqLIkj/auGHs6utNdiohI2ilMBkgnLoqIHKAwGaAD1+fSuImIiMJkgKpKtGciItJDYTJAlbrYo4hIL4XJAI0s7rk+l/ZMREQUJgOUnxOltCBHYyYiIihMElJVkq9uLhERFCYJqSzOUzeXiAgKk4RUhmfBi4hkuyEXJmb2TTPbaGaLwse746ZdbWaNZrbCzM6Na58XtjWa2VWDVevosgI271aYiIjkpLuAw/i+u38vvsHMZgAXAzOBGuAxM5sWTv4x8E5gA/CCmd3n7stSXWRNRSG79nXS1t5FSf5Q/VWKiKTekNszOYL5wO3u3u7urwONwCnho9HdV7t7B3B7OG/KjS0vAKBp577BWJyIyJA1VMPkSjNbbGY3mdmIsK0WWB83z4aw7XDtb2Bml5tZg5k1tLS0JFxkbUUhABsVJiKS5dISJmb2mJkt6eMxH/gpcAwwB2gC/itZy3X3G9293t3rq6urE/68mjBMNu3cn/BniYgMZ2np6Hf3c/ozn5n9HLg/fLkRGBc3uS5s4wjtKTWqNJ9oxNikPRMRyXJDrpvLzMbGvbwQWBI+vw+42MzyzWwSMBV4HngBmGpmk8wsj2CQ/r7BqDUnGmFMWYHCRESy3lA8BOk7ZjYHcGAN8I8A7r7UzO4AlgFdwGfcvRvAzK4EHgGiwE3uvnSwiq2pKNCYiYhkvSEXJu7+iSNMuw64ro/2B4EHU1nX4dRUFPLiuh3pWLSIyJAx5Lq5hpuaikKad+2nO6Z7wYtI9lKYJKimopDObtdlVUQkqylMElRbEZy4qHETEclmCpMEHTjXRGEiItlLYZIghYmIiMIkYWUFuZTm5+gseBHJagqTJKipKNSeiYhkNYVJEtRUFLBpl8JERLKXwiQJgj0TdXOJSPZSmCRBTUUh2/d0sK+jO92liIikhcIkCWrCc03U1SUi2UphkgQ15To8WESym8IkCXSuiYhkO4VJEowpL8AMNmoQXkSylMIkCXKjEUaX6iZZIpK9FCZJUlOhMBGR7KUwSRKdBS8i2UxhkiTjRxaxYcc+2rt0romIZB+FSZLMrCmnK+a81tyW7lJERAadwiRJZteWA/DKxl1prkREZPApTJJk3MhCygpyFCYikpUUJkliZsyqLWeJwkREspDCJIlm15azormVjq5YuksRERlUCpMkmlVbTkd3jNc2t6a7FBGRQaUwSaKeQXh1dYlItlGYJNGEyiJKNQgvIllIYZJEZsbMmjLtmYhI1lGYJNns2nKWN7fS2a1BeBHJHgqTJJtVW05HV4yVm3UmvIhkD4VJkmkQXkSykcIkySZWFlOSr0F4EckuCpMki0SMGTVlChMRySoKkxSYXVvO8qbd7O/U5ehFJDukJUzM7CIzW2pmMTOrP2Ta1WbWaGYrzOzcuPZ5YVujmV0V1z7JzBaE7b83s7zBXJe+vGP6KNq7Yjy2fHO6SxERGRTp2jNZArwfeDK+0cxmABcDM4F5wE/MLGpmUeDHwHnADOAj4bwA3wa+7+5TgB3ApwdnFQ5v7jGVjCkr4O4XN6a7FBGRQZGWMHH35e6+oo9J84Hb3b3d3V8HGoFTwkeju6929w7gdmC+mRlwFnBn+P6bgQtSvgJvIhoxLjixlidea2FrW3u6yxERSbmhNmZSC6yPe70hbDtceyWw0927Dmnvk5ldbmYNZtbQ0tKS1MIP9f6TaumOOfct2pTS5YiIDAUpCxMze8zMlvTxmJ+qZb4Zd7/R3evdvb66ujqly5o2upTZteX84aUNKV2OiMhQkJOqD3b3cwbwto3AuLjXdWEbh2nfBlSYWU64dxI/f9q9/6RavvXHZaxobmX6mNJ0lyMikjJDrZvrPuBiM8s3s0nAVOB54AVganjkVh7BIP197u7A48AHw/dfCtybhrr79N4TasiJmPZORCTjpevQ4AvNbAMwF3jAzB4BcPelwB3AMuBh4DPu3h3udVwJPAIsB+4I5wX4GvAlM2skGEP55eCuzeFVleRz5vRq7nlpI1268KOIZDAL/rjPPvX19d7Q0JDy5Ty6tJnLb1nIDRfPYf6cwx4bICIyLJjZQnevP7R9qHVzZZxzjhvN9NGl/OgvjcRi2RncIpL5FCYpFokYnzlrCiu3tPHw0uZ0lyMikhIKk0HwntljmVxdzP/8pZFs7VYUkcymMBkE0YjxmTOnsLxpN48t35LuckREkk5hMkjmz6lh/Mgifvjnldo7EZGMozAZJDnRCJ95xzG8snEXT63cmu5yRESSql9hYmafN7MyC/zSzF40s3elurhMc8GJtYwqzefnT61OdykiIknV3z2TT7n7buBdwAjgE8D1KasqQ+XnRLnsbRN5auVWlm3ane5yRESSpr9hYuHPdwO3hGef2xHml8P42CkTKMqL8gvtnYhIBulvmCw0s0cJwuQRMysFdH2QASgvyuXik8dz38ub2LRzX7rLERFJiv6GyaeBq4CT3X0vkAt8MmVVZbhPnT4RB379tzXpLkVEJCn6GyZzgRXuvtPMPg5cC+xKXVmZrW5EEe+ZPZbfLVjH7v2d6S5HRCRh/Q2TnwJ7zewE4MvAKuA3KasqC/zD2yfT1t7FXQt1eXoRGf76GyZd4b1D5gM/cvcfA7rbUwJm15UzZ1wFtzy3Vicxisiw198waTWzqwkOCX7AzCIE4yaSgE+cOoHVLXt4dtW2dJciIpKQ/obJh4F2gvNNmgluj/vdlFWVJd5z/FgqinK55bm16S5FRCQh/QqTMEBuBcrN7Hxgv7trzCRBBblRPlw/jkeXbaZ51/50lyMiMmD9vZzKhwjuxX4R8CFggZl98Mjvkv742FsnEHPntufXpbsUEZEB62831zUE55hc6u6XAKcA/5q6srLH+MoizpxWzW3Pr6NT94kXkWGqv2EScff4G3FsO4r3ypv4xNwJbGlt5xHdiVFEhqn+BsLDZvaImV1mZpcBDwAPpq6s7PJ300ZRN6KQW57VQLyIDE/9HYD/CnAjcHz4uNHdv5bKwrJJNGJ8/NQJLHh9OyuaW9NdjojIUet3V5W73+XuXwofd6eyqGz0ofpx5OVEuOW5NekuRUTkqB0xTMys1cx29/FoNTPdkCOJRhbn8d7ja7j7xY206npdIjLMHDFM3L3U3cv6eJS6e9lgFZktLpk7gT0d3dz90sZ0lyIiclR0RNYQcsK4Ck6oK+c3z+p6XSIyvChMhphPzJ1I45Y2Xa9LRIYVhckQc/7xY6kszuPnuq2viAwjCpMhpiA3ymWnTeTxFS06TFhEhg2FyRD0ibkTKMyNcuOT2jsRkeFBYTIEVRTl8eGTx3Hvoo007dqX7nJERN6UwmSI+vTpk3DgV8+sSXcpIiJvSmEyRI0bWcR7Zo/ldwvWsWufTmIUkaFNYTKEXX7GZNrau7jl2TXpLkVE5IjSEiZmdpGZLTWzmJnVx7VPNLN9ZrYofPwsbtpbzOwVM2s0sx+amYXtI83sT2a2Mvw5Ih3rlAqzass5+9hR3Pjkau2diMiQlq49kyXA+4En+5i2yt3nhI8r4tp/CvwDMDV8zAvbrwL+7O5TgT+HrzPGl981nd37u/i5juwSkSEsLWHi7svdfUV/5zezsUCZuz/nwXVGfgNcEE6eD9wcPr85rj0jzKgp4/zjx3LTM6+zta093eWIiPRpKI6ZTDKzl8zsr2b29rCtFtgQN8+GsA1gtLs3hc+bgdGH+2Azu9zMGsysoaWlJemFp8oX3zmN/Z3d/OTxVekuRUSkTykLEzN7zMyW9PGYf4S3NQHj3f1E4EvA78ys31cnDvdaDnuFRHe/0d3r3b2+urq63+uSbsdUl/CBk+r47YK1Ou9ERIaklIWJu5/j7rP6eNx7hPe0u/u28PlCYBUwDdgI1MXNWhe2AWwOu8F6usPi71WfMT5/zlTcnf9+9LV0lyIi8gZDqpvLzKrNLBo+n0ww0L467MbabWanhkdxXQL0hNJ9wKXh80vj2jNK3YgiPvm2Sdz54gYWb9iZ7nJERA6SrkODLzSzDcBc4AEzeyScdAaw2MwWAXcCV7j79nDaPwO/ABoJ9lgeCtuvB95pZiuBc8LXGemzZ02hsjiPb/1xme53IiJDimXrl1J9fb03NDSku4yjdscL6/nqXYu54eI5zJ9T++ZvEBFJIjNb6O71h7YPqW4ueXMffEsds2vLuf6hV9nb0ZXuckREAIXJsBOJGN947wyadu3np0/oUGERGRoUJsNQ/cSRXHhiLf/719WsamlLdzkiIgqT4err7z6OgtwI/3rPEg3Gi0jaKUyGqerSfL523rH8bdU27lm08c3fICKSQgqTYewjJ4/nxPEV/Mf9y9m1V1cVFpH0UZgMY5GIcd0Fs9m5r5PrH16e7nJEJIspTIa5GTVlfOptE7nt+fUsWL0t3eWISJZSmGSAL75zGnUjCrn67lfY39md7nJEJAspTDJAUV4O/3nhbFa37OEnjzemuxwRyUIKkwxxxrRqLjyxlp/+dRWvbW5NdzkikmUUJhnk2vccR0l+DlfdtZjumM49EZHBozDJIJUl+fzbe2fw4rqd3PLsmnSXIyJZRGGSYS6YU8sZ06r5ziMr2LhTd2UUkcGhMMkwZsZ/XjgLgGvufkWXWhGRQaEwyUB1I4r4yrnTeWJFC/cu2pTuckQkCyhMMtQlcydy4vgKvvXHpWxta093OSKS4RQmGSoaMb7zgePZ097NN+5bmu5yRCTDKUwy2NTRpXz+nKk8sLiJh5c0pbscEclgCpMMd/kZk5lZU8a19yxl596OdJcjIhlKYZLhcqMRvvPB49m5t4N//+OydJcjIhlKYZIFZtaU88/vmMIfXtrIQ6+ou0tEkk9hkiU+e9YUTqgr5+q7X6F51/50lyMiGUZhkiVyoxG+/+E5tHfG+MqdLxPTtbtEJIkUJllkcnUJ155/HE+t3Mqv/7Ym3eWISAZRmGSZj54ynrOPHcX1D73Ki+t2pLscEckQCpMsY2Z876ITGF2ezxW3LGTzbo2fiEjiFCZZaERxHj+/pJ629i7+8ZaFutWviCRMYZKljh1Txn9ddAKL1u/k2nuW6OrCIpIQhUkWO2/2WD5/9lTuXLiBb/1xmQJFRAYsJ90FSHp94Zyp7Gnv4hdPv05nd4z/N38WkYiluywRGWYUJlnOzLjmPceRE43ws7+uoqvbue7CWeREtdMqIv2nMBHMjK/Nm05u1PifvzTS2NLGDRfPoW5EUbpLE5FhIi1/fprZd83sVTNbbGZ3m1lF3LSrzazRzFaY2blx7fPCtkYzuyqufZKZLQjbf29meYO8OhnBzPjyu6bzw4+cyIrmVt59w1O6bL2I9Fu6+jL+BMxy9+OB14CrAcxsBnAxMBOYB/zEzKJmFgV+DJwHzAA+Es4L8G3g++4+BdgBfHpQ1yTDvO+EGh743OlMrCrmit++yKd//QIrN7emuywRGeLSEibu/qi7d4UvnwPqwufzgdvdvd3dXwcagVPCR6O7r3b3DuB2YL6ZGXAWcGf4/puBCwZpNTLWhMpi7rziNL4271ief3075/7gSa7+wyts3Lkv3aWJyBA1FEZZPwU8FD6vBdbHTdsQth2uvRLYGRdMPe19MrPLzazBzBpaWlqSVH5mysuJ8E9nHsNfv/oOLpk7kf9rWM8Z33mcL/5+Ecubdqe7PBEZYlI2AG9mjwFj+ph0jbvfG85zDdAF3JqqOuK5+43AjQD19fU6qaIfRhbn8c33zeQfzpjMTU+/zm3Pr+PulzZy+pQqPvm2ibxj+igdSiwiqQsTdz/nSNPN7DLgfOBsP3C23EZgXNxsdWEbh2nfBlSYWU64dxI/vyRRbUUh/3r+DD531lR+u2Attzy7lk/f3MCkqmIunTuBD9aPoyRfBweKZCtLx1nPZjYP+G/g79y9Ja59JvA7gjGSGuDPwFTACAbqzyYIixeAj7r7UjP7P+Aud7/dzH4GLHb3n7xZDfX19d7Q0JDkNcsend0xHlrSzE1Pv86i9Tspzc/hovpxXHraBCZUFqe7PBFJETNb6O71b2hPU5g0AvkEexYAz7n7FeG0awjGUbqAL7j7Q2H7u4EfAFHgJne/LmyfTDAgPxJ4Cfi4u7e/WQ0Kk+R5ad0OfvXMGh58pYlud84+dhSXnTaJt02pJDhGQkQyxZAKk6FAYZJ8m3fv59bn1nLrgnVs29PB5OpiPv7WCXzgLXWUF+amuzwRSQKFySEUJqnT3tXNA4ubuOW5tby0bicFuRHOP76GD9WP4+SJI7S3IjKMKUwOoTAZHEs27uLWBWv548tNtLV3MamqmA+cVMv7TqhlfKUu1yIy3ChMDqEwGVx7O7p46JVm7mhYz4LXtwNwwrgK3nv8WN45Y7QG7UWGCYXJIRQm6bNx5z7uf3kT9y7axLLwBMjpo0s5+7hRvH1qNW+ZMIK8nKFwPq2IHEphcgiFydCwbtteHl3WzJ+WbaZh7Q66Y05RXpRTJo3klEkjeeukkcyurVC4iAwRCpNDKEyGnt37O3lu1TaebtzK31Zto3FLGwD5ORFm15Zz0oQRnDS+guPrKhhbXqCBfJE0UJgcQmEy9G1ra+eFNTtoWLOdF9ftYMnG3XR0xwCoKsnn+LpyZtWUMaOmnJk1ZdSNKFTAiKTY4cJE17+QIauyJJ95s8Ywb1Zwibf2rm6WN7WyeMNOFq3fySsbdvHEii3Ewr+HSvNzmDamlOljSpk2qoRpo0uZMrqE6pJ8hYxIiilMZNjIz4kyZ1wFc8ZVcMncoG1fRzevNu9mWdNuVjS38mpTK/e/vInd+7t631demMuUUSVMqS4JfoaP2opCXaRSJEkUJjKsFeZFOXH8CE4cP6K3zd1paW1n5ZY2XtvcSuOWNlZuaeNPyzfz+4YDdzIoyI0wqSoIlmOqizmmuoRjqkuYXF1MQW40HasjMmwpTCTjmBmjygoYVVbA26ZUHTRt+54OVrW00biljVVb2ljV0sai9Tu4f/EmeoYPzaBuRCFTqkuYOrqUqaNKmD6mlKmjSinMU8iI9EVhIlllZHEeI4tHcvLEkQe17+/sZs22PTRuaTvo8cyqbXR0BYP+ZjCpsphjx5Zy3JgyZtSUMbOmnNFlGpMRUZiIAAW5UY4dU8axY8oOau/qjrFu+15e29zKiuY2ljftZtmm3Tz4SnPvPCOL85hZU8as2uCoslk15YwfWaTxGMkqChORI8iJRphcXcLk6hLmzTrQ3tbexatNu1m6aTdLN+1i6abd/OKp1XR2B31lpfk5HFdTxsxw72VmTRlTRpWQG9XJl5KZFCYiA1CSn0P9xJHUx3WXtXd181pzW2+4LNm0i9ueX8f+zqCbLC8aYcqoEo4bW8ZxY4NDmKePKdWhy5IRFCYiSZKfE2V2XTmz68p727pjzutb21i6KTh8eXlTK0+ubOGuFzf0zjOyOI/po0t7x2Kmjyll2mgN9svwojARSaFoxJgyqpQpo0qZP6e2t31bW3twXkxza/Bzcyu3P7+efZ3dAEQMJlYVM2Ns0E02I+wyqyrJT9eqiByRwkQkDSpL8jltSj6nxR26HIs567bvDU/CbOXVpt0sWr+T+xc39c4zqjT/oHGYmTXljBupy8hI+ilMRIaISMSYWFXMxKpi5s0a29u+a28ny5oODPQv3bSLv77WctBlZHrGYY4dW8ax4VhMUZ7+e8vg0b82kSGuvCiXucdUMveYyt62/Z3dvNrcyrJNu1nWtItlm3Zz58IN7Ono7p1n3MhCpo0qZero0t5LyBxTXUxpQW46VkMynMJEZBgqyD1wnbIesZizYcc+ljcH1yl7bXMrKze38eTKlt5DliHoKptcXczk6hImVQZ7QpOqiqgbUaTLyMiAKUxEMkQkYoyvLGJ8ZRHnzhzT294ZnnjZc1b/6pY9rN7axgOLm9i1r/Ogzxhdls/4kUXUVhRSU1FI7YhCxpYXMLqsgLHlhYwoytX4jPRJYSKS4XKjkd6LWJ478+BpO/d28PrWPazZtof12/exbvte1m3fS8PaHTQvbqIr5od8llFdkk91WQGjSvOpKsmnuiSPqtJ8RhbnUVmcT2VJHiOK8hhRlEuOTtLMGgoTkSxWUZTHiePzDrrqco/umLOldT/Nu4JH0679bGltZ0vrflpa21m/fS8vrdvBtj0dHO4ee6UFOYwoyqOiKJfywgOPssJcSgtyKC3Ipawgh+K8HIrzcyjOj1KUF6UwL4fC3CgFuRHyc6JEdWmaIU9hIiJ9ikaMseWFjC0vPOJ83TFnx94OtrV1sK2tne17O9ixp4NtezrYubeTnXs72LG3k537OtmwYx+79nWye1/nG/Z6jiQ3auRFI+TlBI/caIS8aPAzJ2rkRCPkRoycqJEbjRCNGDmRCDlhW/AzeB1MM6KR4L3RiBG1uPZw/ohZ7/zRSIRoBCLW8/rA+yLh+yJxnxPto+3Aew98Tvzn9T43IxKhj7ahHagKExFJSDRiVJXkhydUlvbrPe7O/s4Yrfs7aW3vYk97F23tXext72ZvZzf7O7rZ29FFe1eM/Z0x9nd109EV6310dsfo6A5+dnU7nTGnK3y+p6uLrpjT1e10xWLhT6c75nR2x4i5907v7mmPxQ67dzWURCz4fZuFAWNBMEUi1uc0C4MpYkEwWTj/Ly+tZ0JlcVJrU5iIyKAzMwrzohTmRRmV7mJC7kGwdMUOhE8sfN4TQLGwvdsPBFF3XFtf02PudMegOxYLfrrTHYsRC5/H3vBeett6auh2Jxa2xzx47XHzudO7XHfv/Wz3cL165g9/5uck/6g9hYmICEHABV1m6a5keNKhFiIikjCFiYiIJExhIiIiCVOYiIhIwhQmIiKSMIWJiIgkTGEiIiIJU5iIiEjCzIfDNQRSwMxagLVH8ZYqYGuKyhmqsnGdITvXOxvXGbJzvRNd5wnuXn1oY9aGydEyswZ3r093HYMpG9cZsnO9s3GdITvXO1XrrG4uERFJmMJEREQSpjDpvxvTXUAaZOM6Q3audzauM2TneqdknTVmIiIiCdOeiYiIJExhIiIiCVOYvAkzm2dmK8ys0cyuSnc9qWJm48zscTNbZmZLzezzYftIM/uTma0Mf45Id63JZmZRM3vJzO4PX08yswXhNv+9meWlu8ZkM7MKM7vTzF41s+VmNjfTt7WZfTH8t73EzG4zs4JM3NZmdpOZbTGzJXFtfW5bC/wwXP/FZnbSQJerMDkCM4sCPwbOA2YAHzGzGemtKmW6gC+7+wzgVOAz4bpeBfzZ3acCfw5fZ5rPA8vjXn8b+L67TwF2AJ9OS1WpdQPwsLsfC5xAsP4Zu63NrBb4HFDv7rOAKHAxmbmtfw3MO6TtcNv2PGBq+Lgc+OlAF6owObJTgEZ3X+3uHcDtwPw015QS7t7k7i+Gz1sJvlxqCdb35nC2m4EL0lJgiphZHfAe4BfhawPOAu4MZ8nEdS4HzgB+CeDuHe6+kwzf1gS3KS80sxygCGgiA7e1uz8JbD+k+XDbdj7wGw88B1SY2diBLFdhcmS1wPq41xvCtoxmZhOBE4EFwGh3bwonNQOj01VXivwA+CoQC19XAjvdvSt8nYnbfBLQAvwq7N77hZkVk8Hb2t03At8D1hGEyC5gIZm/rXscbtsm7TtOYSIHMbMS4C7gC+6+O36aB8eRZ8yx5GZ2PrDF3Remu5ZBlgOcBPzU3U8E9nBIl1YGbusRBH+FTwJqgGLe2BWUFVK1bRUmR7YRGBf3ui5sy0hmlksQJLe6+x/C5s09u73hzy3pqi8F3ga8z8zWEHRhnkUwllARdoVAZm7zDcAGd18Qvr6TIFwyeVufA7zu7i3u3gn8gWD7Z/q27nG4bZu07ziFyZG9AEwNj/jIIxiwuy/NNaVEOFbwS2C5u/933KT7gEvD55cC9w52bani7le7e527TyTYtn9x948BjwMfDGfLqHUGcPdmYL2ZTQ+bzgaWkcHbmqB761QzKwr/rfesc0Zv6ziH27b3AZeER3WdCuyK6w47KjoD/k2Y2bsJ+tWjwE3ufl16K0oNMzsdeAp4hQPjB18nGDe5AxhPcMn+D7n7oYN7w56ZnQn8i7ufb2aTCfZURgIvAR939/Y0lpd0ZjaH4KCDPGA18EmCPy4zdlub2beADxMcufgS8PcE4wMZta3N7DbgTIJLzW8GvgHcQx/bNgzWHxF0+e0FPunuDQNarsJEREQSpW4uERFJmMJEREQSpjAREZGEKUxERCRhChMREUmYwkQkQWb2t/DnRDP7aJI/++t9LUtkqNGhwSJJEn+uylG8Jyfu2lB9TW9z95IklCeSUtozEUmQmbWFT68H3m5mi8J7Z0TN7Ltm9kJ4r4h/DOc/08yeMrP7CM7CxszuMbOF4f02Lg/brie4yu0iM7s1flnhGcvfDe/N8YqZfTjus5+Iu1fJreGJaSIplfPms4hIP11F3J5JGAq73P1kM8sHnjGzR8N5TwJmufvr4etPhWckFwIvmNld7n6VmV3p7nP6WNb7gTkE9yKpCt/zZDjtRGAmsAl4huAaVE8ne2VF4mnPRCR13kVw3aNFBJelqSS4CRHA83FBAvA5M3sZeI7gwntTObLTgdvcvdvdNwN/BU6O++wN7h4DFgETk7AuIkekPROR1DHgs+7+yEGNwdjKnkNenwPMdfe9ZvYEUJDAcuOvLdWN/p/LINCeiUjytAKlca8fAf4pvLQ/ZjYtvAnVocqBHWGQHEtw2+QenT3vP8RTwIfDcZlqgjsnPp+UtRAZAP3FIpI8i4HusLvq1wT3RpkIvBgOgrfQ921hHwauMLPlwAqCrq4eNwKLzezF8PL4Pe4G5gIvE9zo6Kvu3hyGkcig06HBIiKSMHVziYhIwhQmIiKSMIWJiIgkTGEiIiIJU5iIiEjCFCYiIpIwhYmIiCTs/wN9ywWBieCiEwAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Record the optimization process\n",
    "loss_list, singular_value_list = [], []\n",
    "U_learned, V_dagger_learned = [], []\n",
    "\n",
    "  \n",
    "# Determine the parameter dimension of the network\n",
    "net = NET(M, weight)\n",
    "\n",
    "# We use Adam optimizer for better performance\n",
    "# One can change it to SGD or RMSprop.\n",
    "opt = paddle.optimizer.Adam(learning_rate=LR, parameters=net.parameters())\n",
    "\n",
    "# Optimization cycle\n",
    "for itr in range(ITR):\n",
    "\n",
    "    # Forward propagation to calculate loss function\n",
    "    U, V_dagger, loss, singular_values = net()\n",
    "\n",
    "    # Back propagation minimizes the loss function\n",
    "    loss.backward()\n",
    "    opt.minimize(loss)\n",
    "    opt.clear_grad()\n",
    "\n",
    "    # Record optimization intermediate results\n",
    "    loss_list.append(loss[0][0].numpy())\n",
    "    singular_value_list.append(singular_values)\n",
    "    \n",
    "    if itr% 10 == 0:\n",
    "        print('iter:', itr,'loss:','%.4f'% loss.numpy()[0])\n",
    "\n",
    "# Draw a learning curve\n",
    "loss_plot(loss_list)\n",
    "\n",
    "# Record the last two learned unitary matrices\n",
    "U_learned = U.numpy()\n",
    "V_dagger_learned = V_dagger.numpy()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We now explore the accuracy of the quantum version of singular value decomposition. In the above section, we mentioned that the original matrix can be expressed with less information obtained by decomposition. Specifically, it uses the first $T$ singular values and the first $T$ left and right singular vectors to reconstruct a matrix:\n",
    "\n",
    "$$\n",
    "M_{re}^{(T)} = UDV^{\\dagger}, \\tag{4}\n",
    "$$\n",
    "\n",
    "For matrix $M$ with rank $r$, the error will decreasing dramatically as more and more singular values are used to reconstruct it. The classic singular value algorithm can guarantee:\n",
    "\n",
    "$$\n",
    "\\lim_{T\\rightarrow r} ||M-M_{re}^{(T)}||^2_2 = 0, \\tag{5}\n",
    "$$\n",
    "\n",
    "The distance measurement between the matrices is calculated by the Frobenius-norm,\n",
    "\n",
    "$$\n",
    "||M||_2 = \\sqrt{\\sum_{i,j} |M_{ij}|^2}. \\tag{6}\n",
    "$$\n",
    "\n",
    "The current quantum version of singular value decomposition still needs a lot of efforts to be optimized. In theory, it can only guarantee the reduction of accumulated errors."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:46:13.453107Z",
     "start_time": "2021-03-09T03:46:12.949847Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABDbklEQVR4nO3dd3hUddbA8e/JJCSEklACRBASEAgQIEAEVJCiCBZQkSI2sK5lddXFVdd9la2iKLqWtTdUEBEBURSRKiIgvQZpAeklBBIIpJ33j3sTQ0iZQJJJOZ/nmScz987ce2aSzLm/LqqKMcaYysvP1wEYY4zxLUsExhhTyVkiMMaYSs4SgTHGVHKWCIwxppLz93UAZ6Nu3boaERHh6zCMMaZcWb58+SFVDcu9vVwmgoiICJYtW+brMIwxplwRkR15bbeqIWOMqeQsERhjTCVnicAYYyq5ctlGYExZcODAAUaOHElcXByZmZm+DscYAPz8/IiKiuKFF16gXr16Xr3GEoExZ2nkyJH06tWL9957j4CAAF+HYwwAaWlpfPzxx4wcOZJx48Z59ZpKUzU0deVuBjz7BUue7kL/ZyczdeVuX4dkyrm4uDhuueUWSwKmTAkICODWW28lLi7O69dUihLB1JW7efLLtfxVJ3ChZxODj4/nyS+rAXBdh4Y+js6UV5mZmZYETJkUEBBQpOrKSlEiGDNzE9XTDjHYMx8/UQZ7FlA97TBjZm7ydWjGGONzlSIR7ElM4SH/KXjIAMCPDB70/5I9iSk+jsyYc+PxeIiJiSE6Opr+/fuTmJjos1jmzZvHokWLiu14U6dOZcOGDdmPn376aX744YdiO35uX331FaNHj/bquSdOnKBOnTocO3bstO3XXXcdEydOBJz427VrR1RUFNHR0XzxxRfZz1u8eDFdunQhJiaGVq1aMWrUKOLj42nUqNEZV/IxMTEsWbKEUaNG0bBhQ2JiYmjevDkDBw487fM5F5UiEbQNSWGwZz4B4nzAgZLBYM8CokNO+jgyU5lMXbmbS0bPIfKJb7hk9JxiaaeqWrUqq1atYt26ddSuXZvXX3+9GCI9OwUlgvT09CIfL3ci+Mc//sHll19+1vEVZsCAATzxxBNePTc4OJi+ffsyZcqU7G1Hjx5l4cKF9O/fn9WrVzNy5EimTZtGXFwc06dP5/HHH2f58uUADB8+nLfffjv7dzdkyBAiIiJo3LgxP/74Y/Yx4+LiSEpKokuXLgA88sgjrFq1is2bNzN06FB69+7NwYMHz/m9V4pE8HL4LITTV2LzI5P/hn/vo4hMZZPVTrU7MQUFdiem8OSXa4u108JFF13E7t3O8bZu3Uq/fv3o1KkT3bt3z2443L9/P9dffz3t27enffv22V/cY8eOJTo6mujoaF5++WUA4uPjadWqFXfffTdt2rThiiuuICXFKUW/8sortG7dmnbt2nHjjTcSHx/Pm2++yUsvvURMTAw//vgjI0aM4N5776VLly785S9/YdSoUbzwwgvZ8UZHRxMfHw/AuHHjaNeuHe3bt+fWW29l0aJFfPXVVzz22GPExMSwdetWRowYkX1VPXv2bDp06EDbtm254447OHXqFOBMP/PMM8/QsWNH2rZtm2eDadeuXVm/fn324549e7Js2TI+/PBD/vjHPwIwffp0unTpQocOHbj88svZv3//GccZNmwYn332WfbjKVOm0LdvX4KDg3nhhRf461//SmRkJACRkZH89a9/5cUXXwScrsfh4eGAU6pr3bp1nsf87LPPuPHGG/P8fQ8dOpQrrriC8ePH57m/KCpFY3HTk+tBTr8iCZR0Z7sxxWToWz/nu2/lzkRSM04v8qekZTBq+nqu69CQhOOp3PfJ8tP2T/zDRV6fOyMjg9mzZ3PnnXcCcM899/Dmm2/SvHlzlixZwv3338+cOXN46KGH6NGjB1OmTCEjI4Pk5GSWL1/OBx98wJIlS1BVunTpQo8ePahVqxabN29mwoQJvPPOOwwZMoTJkydzyy23MHr0aLZv305gYCCJiYmEhoZy7733Ur16dUaOHAnAe++9x65du1i0aBEej4dRo0blGfv69ev517/+xaJFi6hbty4JCQnUrl2bAQMGcM011zBo0KDTnn/y5ElGjBjB7NmzadGiBbfddhtvvPEGDz/8MAB169ZlxYoV/O9//+OFF17g3XffPe31Q4cO5fPPP+fvf/87e/fuZe/evcTGxrJu3brs53Tr1o3FixcjIrz77rs8//zz2V/iWfr27ctdd93F4cOHqVOnDp999ll2Ilm/fn3255AlNjaWV199FXCu7Fu2bEnPnj3p168fw4cPJygoiCFDhhATE8Orr76Kv78/EydOZNKkSfn+3jt27Fik3kH5qRQlAu5dCKOOwqijHH1wE6c0gMV1BzrbjSkFuZNAlsQTaed03JSUFGJiYmjQoAH79++nT58+JCcns2jRIgYPHkxMTAx/+MMf2Lt3LwBz5szhvvvuA5wr0ZCQEBYuXMj1119PtWrVqF69OgMHDsyunoiMjCQmJgaATp06ZV/Bt2vXjptvvplPPvkEf//8rycHDx6Mx+Mp8D3MmTOHwYMHU7duXQBq165d4PM3bdpEZGQkLVq0AJxqlgULFmTvHzhw4Bnx5jRkyJDsksXnn39+RqIB2LVrF3379qVt27aMGTPmtBJElipVqjBgwAC++OILDh06xMqVK+nbt2+BsWd5+umnWbZsWfYVfb9+/QCoX78+0dHRzJ49m1WrVuHv7090dHS+xymuNecrRYkgp5A6DZh03kNM2R1K9Kl0qgdWuo/AlJCCruAvGT2H3Xl0TmgYWhWA2tWqFKkEkCWrjeDEiRP07duX119/nREjRhAaGsqqVauKfLzcAgMDs+97PJ7sqqFvvvmGBQsWMH36dP7973+zdu3aPF9frVq17Pv+/v6nNYSePFkybXRZMXs8njzbJho2bEidOnVYs2YNEydO5M033zzjOQ8++CCPPvooAwYMYN68efmWZoYNG8Y///lPVJVrr702uztx69atWb58Oe3bt89+7vLly4mNjc1+3KxZM+677z7uvvtuwsLCsksWWdVD9evXZ9iwYQW+15UrV552zLNVqiUCEQkVkS9EJE5ENorIRSJSW0Rmichm92etko6jab8HWZTajK9W7SnpUxkDwGN9W1I14PQr46oBHh7r27JYjh8cHMwrr7zCiy++SHBwMJGRkdlVCqrK6tWrAbjssst44403AKc66ejRo3Tv3p2pU6dy4sQJjh8/zpQpU+jevXu+58rMzOS3336jV69ePPfccxw9epTk5GRq1KhBUlJSvq+LiIhgxYoVAKxYsYLt27cD0Lt3byZNmsThw4cBSEhIAMj3eC1btiQ+Pp4tW7YA8PHHH9OjR48ifV5Dhw7l+eef5+jRo7Rr1+6M/UePHqVhQ2eM0UcffZTvcXr27MnmzZt5/fXXT/vSHjlyJM8++2x2iSQ+Pp6XX36Zxx57DHASadbV/ObNm/F4PISGhgJOiWbGjBlMnDgx3/YBgMmTJ/P9998Xmiy8UdpVQ/8FvlPVKKA9sBF4Apitqs2B2e7jEtWxcSh9whJJnTum2IpWxhTkug4NeXZgWxqGVkVwSgLPDmxbrAMaO3ToQLt27ZgwYQKffvop7733Hu3bt6dNmzZMmzYNgP/+97/MnTuXtm3b0qlTJzZs2EDHjh0ZMWIEnTt3pkuXLtx111106NAh3/NkZGRwyy230LZtWzp06MBDDz1EaGgo/fv3Z8qUKdmNxbndcMMNJCQk0KZNG1577bXsqp02bdrw1FNP0aNHD9q3b8+jjz4KwI033siYMWPo0KEDW7duzT5OUFAQH3zwAYMHD6Zt27b4+flx7733FumzGjRoEJ999hlDhgzJc/+oUaMYPHgwnTp1yq6yyoufnx+DBg3i8OHDpyWjmJgYnnvuOfr370+LFi1o0aIFb7zxBi1bOon/448/pmXLlsTExHDrrbfy6aefZlehhYaGctFFF1G/fn2aNm162vmyGuObN2/OJ598wpw5cwgLO2OdmSKT0voiFJEQYBXQVHOcVEQ2AT1Vda+IhAPzVLXAy6TY2Fg914Vpln7+HJ03/Iet10+nWftLz+lYpnKKjY21BZKMV5544gmWLFnCzJkzqVKlSqmcM6+/TxFZrqpn1CWVZokgEjgIfCAiK0XkXRGpBtRX1b3uc/YB9fN6sYjcIyLLRGRZcfSbbd33bjL9q9Is/vNzPpYxxhRk9OjRzJ07t9SSQFGVZiLwBzoCb6hqB+A4uaqB3JJCnkUUVX1bVWNVNbY4ikLVQ2rj124wrJsMKYnnfDxjjCmvSjMR7AJ2qeoS9/EXOIlhv1slhPvzQGkFlNbhdkg7wS/Tz+w1YIwxlUWpJQJV3Qf8JiJZ9f+XARuAr4Dh7rbhwLTSiing/I5sCGxP+omjpXVKY4wpc0q7E/2DwKciUgXYBtyOk4w+F5E7gR1A3s34JaTV4/MQv8oxrs4YY/JSqolAVVcBeY1+uKw048hJ/PzQzEx2b99Io2ZtfBWGMcb4jF0KA0s/foqwcT04tN8GmJnyxaahLj5FmYYanKmob775Ztq2bUt0dDTdunUjOTmZXr16MXPmzNOe+/LLL3PfffcRHx9P1apV6dChA61ataJz5858+OGHxfxOis4SARDe+QYCJY1NM9/ydSimokvaBx9cCUlnzmZ5Nmwa6uJTlGmowRmcV79+fdauXcu6deuy167OPYMoOLOIZo0AbtasGStXrmTjxo189tlnvPzyy3zwwQfF+l6KyhIB0LhVLHFV2tB4+0QyMjJ8HY6pyOY/DzsXw/zniv3QNg116U5DvXfv3uxpKMCZ+iIwMJBBgwbxzTffkJqamv057tmzJ89pO5o2bcrYsWN55ZVXCvv1lixVLXe3Tp06aXFbMf1N1Wdq6sp5U4r92KZiOuPv8P2rzrwtedvZd+q46tuXq44KVX2mpvPznctVV3zi7E8+dOZrvVCtWjVVVU1PT9dBgwbpt99+q6qqvXv31l9//VVVVRcvXqy9evVSVdUhQ4boSy+9lP2axMREXbZsmUZHR2tycrImJSVp69atdcWKFbp9+3b1eDy6cuVKVVUdPHiwfvzxx6qqGh4eridPnlRV1SNHjqiq6jPPPKNjxozJjm348OF69dVXa3p6ep7727Rpo9u3b9d169Zp8+bN9eDBg6qqevjw4ezXT5o06bTjTZo0SVNSUrRRo0a6adMmVVW99dZbs99TkyZN9JVXXlFV1ddff13vvPPOMz6zsWPH6tNPP62qqnv27NEWLVqoquoHH3ygDzzwgKqqJiQkaGZmpqqqvvPOO/roo4+ecZyVK1dqWFiYdu3aVZ966qnsz1tV9eqrr9apU6eqquqzzz6rf/7zn1VVdfv27dqmTZvTjnPkyBENCgo64/jnKq/vSWCZ5vGdaiUCV5vLbyWRGpz45RNfh2IqqqM7IWt2FVVI3HnOh7RpqH03DXVMTAzbtm3jscceIyEhgQsvvJCNGzcCpy8wk7NaKC9aBuY7szmYXVWCgpkQ/Sqjl8MPiSnZ0wMb47Xbv8l/36ljcDKR3wfOq/P4ArfOu1qdgl+fD5uGOv+YS2Ma6qzEOXDgQPz8/JgxYwatWrXi2muv5ZFHHmHFihWcOHGCTp065RvvypUradWq1dm92WJiJYIcevfuy0mqMHHpuV+pGXOa+c+D5lqcRjOLra3ApqEu/Wmof/rpJ44cOQJAamoqGzZsoEmTJoCTIHr16sUdd9xRYGkgPj6ekSNH8uCDDxYp/uJmiSCH82sH8+eGcXT/+U7S0s5t5ShjTrNrKWSknr4tI9XZXkxsGmrvFcc01Fu3bqVHjx7Zn0NsbCw33HBD9v5hw4axevXqMxLB1q1bs7uPDhkyhIceeojbb7+9SPEXt1Kbhro4Fcc01PlZM/Mj2v38ELuv+oiGna8rkXOYisGmoTZlWVmdhrpcaNN7GFq9Pg23TPB1KMYYUyosEeTiCaiCdLgV/XUmJw5s93U4xhhT4iwR5OFU+1tRYMXU//o6FFOG+fn5WVuSKZPS0tLwK8JkmpYI8hBYN4LlTe6iRvNuvg7FlGFRUVF8/PHHlgxMmZKWlsbHH39MVFSU16+xxmJjztKBAwcYOXIkcXFxp/WPN8aX/Pz8iIqK4oUXXqBevXqn7cuvsdgGlBXgwO7tbFvyNV0H+raPrymb6tWrx7hx43wdhjHnzKqGCrBz9lt0XfM3tm5a7etQjDGmxFgiKMAFfe8nXf3YO9vWNDbGVFyWCAoQWr8xG2p2o83+6Rw/ftzX4RhjTImwRFCIoIvvppYksfp7qws2xlRMlggK0bzL1ez0a8SOTavKxHSxxhhT3CwRFEL8PPx42RSeTBzAml1HfR2OMcYUO0sEXhjQKZLgKh4mL1rn61CMMabYWSLwQo2gAMaeN4c/bxjC0cREX4djjDHFyhKBl1rEXk6IHCdz/WRfh2KMMcXKEoGXmnbqA2FR1FpvaxobYyqWUk0EIhIvImtFZJWILHO31RaRWSKy2f1ZqzRj8poIxN4Be1bw27pFvo7GGGOKjS9KBL1UNSbHxEdPALNVtTkw231cJp1qM5gUqrDzh//5OhRjjCk2ZWHSuWuBnu79j4B5wOO+CqYggdVrs6H3m7RudbGvQzHGmGJT2iUCBb4XkeUico+7rb6q7nXv7wPq5/VCEblHRJaJyLKDBw+WRqx5an3pDdQKC/fZ+Y0xpriVdiLopqodgSuBB0Tk0pw71Rm6m+fwXVV9W1VjVTU2LCysFELN37p5X/Dzi0PIzLA56I0x5V+pJgJV3e3+PABMAToD+0UkHMD9eaA0YzobGYm7uChpJqsWz/J1KMYYc85KLRGISDURqZF1H7gCWAd8BQx3nzYcmFZaMZ2tVlfcQTJVOfnzO74OxRhjzllpNhbXB6aISNZ5x6vqdyLyC/C5iNwJ7ACGlGJMZ6VKcE3W1b+KTvu+Yt/+PTSof56vQzLGmLNWaiUCVd2mqu3dWxtV/be7/bCqXqaqzVX1clVNKK2YzsV5l91PoKQR9+3bvg7FGGPOSZESgYjEishQt2onq7qnLHRBLXUNWsSyoHo/Zu7yI80ajY0x5ZhXiUBE6ovIYmApMJ7fu3iOBV4sodjKvNSrXmFCcidmbyzz7dvGGJMvb0sELwH7gTrAiRzbJ+E0+lZKvaLqcUHNTNbMs4nojDHll7fVOpcBl6nqEbexN8tWoHGxR1VOePyE58Jm0m7XeH777WrOPz/C1yEZY0yReVsiqAqk5rE9DDhZfOGUPxF97iVAMmiw9Qtfh2KMMWfF20SwABiR47GKiAdnTqDZxR1UeVInIhoiuhOw6iPItEZjY0z5420i+Atwt4jMAgJxGog3AJcAT5ZQbOVGesfbIXEnq+ZbW4ExpvzxKhGo6gagLbAI+B4Iwmko7qCqW0suvPLBr9U1JBBC0sZ5vg7FGGOKzOsxAKq6D3imBGMpt/wCAvF/cCnd6zTwdSjGGFNk3o4j+KOI3JLH9ltE5P7iD6v8qekmgVOnKnXbuTGmHPK2jeBh4Lc8tscDjxRXMOXd8gn/4OCz7Thx0pKBMab88DYRNMKZEC63Xe4+A4Q0bEEj9rNi1gRfh2KMMV7zNhHsA2Ly2N4ROFRs0ZRzzS65gYNSh6prxvk6FGOM8Zq3iWA88IqI9BGRAPd2BfAy8GmJRVfOiCeA3U2H0CltBXEb1vg6HGOM8Yq3ieAZ4CdgJs5cQyeAb3G6k/5fyYRWPl3Q737S1Y+9c970dSjGGOMVr7qPqmoaMExEngY64KwrvEpVN5dkcOVR9bDGTDr/cd7d0YCOKWmEVA3wdUjGGFOgIq1HoKqbVfVzVZ1kSSB/ra68j01pYUxZscvXoRhjTKG8HlAmIkNxZiGtR64EoqoDijmuci26YQjD6u/Cf/5U9OK3yTVjqzHGlCneDigbA3wCRACJwOFcN5PLsPC93JL6OTs2rfR1KMYYUyBvSwS3AcNU1eZa9lKLfveiv75GRPwkiOro63CMMSZf3rYR+AGrSjCOCicotAHSegCs+hRNPVH4C4wxxke8TQRvA2fMNWQKlhozHE4eZd6Xb/s6FGOMyZe3VUOhwE0i0gdYA6Tl3KmqDxVzXBVClWaXEhfciSoBReqcZYwxpcrbRNCa36uGonLt02KLpqIRIeovc3wdhTHGFMjbAWW9iuuE7hKXy4DdqnqNiEQCnwF1gOXAraqa1/rI5VZa6ik2r/uF1h27+ToUY4w5gy/qLP4EbMzx+DngJVW9ADgC3OmDmErU+g/+SONpN7Dv4EFfh2KMMWfwOhGISC8ReVtEvhOROTlvRThGI+Bq4F33sQC9gaxuqR8B13kdfTnRoNttVJeTrPvuPV+HYowxZ/B2QNkInEnmagA9gYNALZxpqDcU4XwvA38BMt3HdYBEVU13H+8CGuYTwz0iskxElh0sZ1fWDVp3Y0dAUxpvm0B6eoavwzHGmNN4WyIYCfxRVYfh9Bh6UlU74Iw2TvbmACJyDXBAVZefTaCq+raqxqpqbFhY2NkcwndEON72NlpoPMsW/eDraIwx5jTeJoKmQNY32Cmgunv/NWCEl8e4BBggIvE4jcO9gf8CoSKS1WjdCNjt5fHKlRaX38Fxgkj4ZZKvQzHGmNN4mwgO41QLgfNFHe3erwNU9eYAqvqkqjZS1QjgRmCOqt4MzAUGuU8bDkzzMqZyxT84hC86fsIDB69l52EbaWyMKTu8TQQ/Ale49z/HWa3sA2ACMOscY3gceFREtuAklgrbotq3R3f8/DyMX5LX8s/GGOMb3g4o+yMQ5N5/FkjHqer5HPhXUU+qqvOAee79bUDnoh6jPGoQEsS/zltEq6V/51SfnwgM8HoWcGOMKTHeDihLyHE/E6fvvzkLHS9oRMtDcezdMI/w9pf7OhxjjPG6+2iGiNTLY3sdEbH+kEXQovetaFAI4Zsn+DoUY4wBvG8jyG+JrUCgQk0HUdKkSjWk/TB0wzQS9ttSlsYY3yuwakhEHnXvKnCviOQcM+ABugNxJRRbhXWq/W0ELnmT5dNep889z/o6HGNMJVdYG8GD7k8B7gJyVgOlAvHAvcUfVsUWeF4bVrV4kMat+vo6FGOMKTgRqGokgIjMBQaq6pFSiaoSiLmpyJ2tjDGmRHjVRqCqvXInARG5QESC8nuNKVz8uiXM/diqhowxvuVtr6H/iMhw976IyA/Ar8BeEelSkgFWZEnLxtN9y/Ns2GTNLMYY3/G219DNwCb3/pVAe6ArMA4YXQJxVQoRfR/AXzLZPfstX4dijKnEvE0E9XGmiAa4CvhcVZcCrwIdSiKwyqBGeAt+rX4h0funcexEiq/DMcZUUkWZdK6Je/8KYLZ735/8xxgYLwR2vZtwOcyy7yf6OhRjTCXlbSKYDIwXkVlAbWCmuz0G2FICcVUaTS4ayG+eRqyNi0NVfR2OMaYS8jYRPAq8grMaWR9VPe5uDwfeKInAKg1PAIv6fsNLid1ZtsN65xpjSp+33UfTVfVFVf2Tqq7Msf0lVX235MKrHPrHNKJGkIevf/zF16EYYyqhfAeUiUhHYJWqZrr386WqK4o9skokuIo/74ZNoumWWRw+up46ITUKf5ExxhSTgkYWLwMaAAfc+0reDcOKM++QOQeNLhxA2IwvOLblO+g02NfhGGMqkYISQSRwMMd9U4Iaxl4DPzWm5rpxlgiMMaUq30Sgqjvyum9KiJ+HzI7D8Zv7T35dv4IWbQqsjTPGmGLj7RQTTUXkURF5TUReFZFHRMRKCcUsrf1NpOHhtznW/m6MKT2FLlUpIn/GWafYg9NeIEAY8JyIPK6qL5VsiJVHYOh5xPefSLc2l/g6FGNMJVJgiUBEugHPA2OAMFUNV9UGQD3gRWCMiNi3VjGK6NSHwKBgX4dhjKlECqsaug8Yp6pP5VrA/rCqPgl8AtxfkgFWRmumv8bC0deSnpHp61CMMZVAYYmgK/BhAfs/dJ9jilGV9CS6nZzH/f96mSVPd6H/s5OZunK3r8MyxlRQhSWCBsC2AvZvxZlmwhSjLQ2u4ZQG8GjGe1womxh8fDxPfrnWkoExpkQUlgiqAqcK2J8KBHpzIhEJEpGlIrJaRNaLyN/d7ZEiskREtojIRBGp4l3oFdez8w/yQ2YHWsou/EQZ7FlA9bTDjJm5qfAXG2NMERXaawi4WkSO5rMvtAjnOgX0VtVkEQkAForItzgT2r2kqp+JyJvAnVTyiez2JKYg/r/PROpHJg/6f8kziXf4MCpjTEXlTSJ4r5D9Xs2drM4cy8nuwwD3pkBv4CZ3+0fAKCp5ImgbkkLvk6sQd0KPQElniGc+B6U2P/8aw0UtGvo2QGNMhVJg1ZCq+nlx83qeIRHxiMgqnPEIs3DaGBJVNd19yi4gz285EblHRJaJyLKDBw/m9ZQK4+XwWUiu/OpPBn/2fE6bST1g2fuQkeaj6IwxFY236xEUC1XNUNUYoBHQGYgqwmvfVtVYVY0NCwsrqRDLhKYn1xMo6adt85dMMmtFUq1eBHz9CCdf6sjbr/ybA0dtiUtjzLnxpmqo2KlqoojMBS4CQkXE3y0VNAKsa8y9C/Pc7AegCptncfKbp+l87DtqBj8BwPFT6VQL9Mmv0xhTzpVaiUBEwkQk1L1fFegDbATmAoPcpw0HppVWTOWSCLS4gtA/LaL9I1MJCvBw6vAOto++iLfeeZ1tB5J8HaExppwpzaqhcGCuiKwBfgFmqerXwOPAoyKyBahD4Y3TBsDPD6lWBwA9toeGVY7zh91/JfG1nrz1wfv8lnDCxwEaY8oLKY8LpsfGxuqyZct8HUbZkpFG0pKPyJz7HCFpB/gpM5qZHV7j/t6taBAS5OvojDFlgIgsV9XY3NutUrmi8ARQ4+K74MJbOPbTO2Ru2MD4X/Yycfk+Huzgz419L6Vuda/G/hljKhmvEoGI1MLp398LZ+bR06qUVLVesUdmzk5AEDV7Pkj3njA34QRffP0196+5h8WbLqbuXWOhntcdtYwxlYS3JYJxQBucAV/78XIQmfGt82sH88iQviT88DBdVr0N/+tKaptBTKx2M9f17kaNoABfh2iMKQO8aiMQkSSgh6quKPmQCmdtBGfh+GH46WXSl7xNUro/u29fQXREfV9HZYwpRfm1EXjba2hrEZ5ryqJqdeCKf+L/8GpS+7/hJAFV5rz3VybMWcap9AxfR2iM8RFvv9z/BDwrIu1FxOspJUwZVKMB9WMHAJC+ezU9fnuDa+dfxcRn72LywrWk2WI4xlQ63iaCLThTUq8AUkUkI+et5MIzJcm/UQx+f1xKcsQV3JIxhT6z+jBu9P1MW7qZjExrBjKmsvC2jWABUAt4kzwai1V1colElw9rIyh+um8dh6Y/Q+beNXQ/MYbG9WrxyGXNubJtOH5+4uvwjDHF4FzHEcQCnVV1XfGGZcoKaRBN2N2TyTyRyMtbU3jt+3U0nHw173x/BXc8NIqAwKq+DtEYU0K8rRraANQsyUBM2eAXHMpVbcOZfkcUjcLq8IfjbxLwvwthxTjW/XaY8jgS3RhTMG8Twd+AsSJyuYjUF5HaOW8lGaDxDU+t86n7x1lw6xSoXg++epDgdy7mm0WrfB2aMaaYeVs1NMP9+T2ntw+I+9h6ElVEItCsNzTtRdrGb8j8aRK9OkUDsHLFUvzqNqd941pMXbmbMTM3sScxhfNCq/JY35Zc18FWUTOmvPA2EfQq0ShM2SZCQOtruKD1Nc7j44eImt6fzRnhPF1zBBMTW1AzPYHPqrzKHxMf4skvUwEsGRhTThTaayhroXngNlXdVCpRFcJ6DflYRjonV4zn1A/PEnJqD0syo0jMrEYfzwo+ybiMp9PvoGFoVX56orevIzXG5HDWI4tVNQ2IxOYXMlk8/gRdeBshj63m/9Jup6nsoa//cvxEGexZQBiJ7Em0JTSNKS+8bSz+CLi7JAMx5ZB/FebUGMCsjE6kqdNM5Ecmn1T5NyP9PyNu41ofB2iM8Ya3bQTVgJtFpA+wHDiec6eqPlTcgZny4W89atPru4UEuAPMAyWdC9hDc/89yMTpcMHlfB98FaurdmZkvzaI2OA0Y8oabxNBK5zpJQCa5tpnVUaV2JWHx5Hhx+l/BX7++LW9AWpFwIqPuCJpFkm17kKufBGA79fvo0tkHUKCbRpsY8oCrxKBqlqvIZO3XUvxaNppmzyaBgfWw8C34NLH4NfvuD68AwBHVkwjc8qr/Ik+1Ii6jBtiG9O9eRgem8bCGJ8p0lKVIhIEXIBz/bdVVU+WSFSm/Lh3YcH7Pf7Q6prsxqhQSeLyalvpd/IXdm5+j0829ObZ4D706tiGQZ0acUG96iUesjHmdN5OOhcA/Af4I1AFZyDZKeBV4Cm3Z1Gpse6j5Vz6Kdg4ncxf3sNv5yL2BDSm+/HRZGRCh8ahDOrUiOs7NCS4ii2pbUxxOtdJ554DhgH34owpAOgOPIvT82hkcQRpKgn/QGg7CL+2g+DARs5L2sfP9S7i62XbuXDhHUz9ujNpLf4PqtRl39GThNUItKojY0qQtyWCfcAdqjoj1/argXdVNbyE4suTlQgqqIRt6Bd3IntWQEAwRN/An7d14mBIG8bd0dnX0RlT7p3rUpUhOMtV5rYVCD2HuIz5Xe2myD1z4Z550HYwum4yLx59mPtaHAPg+Kl0bn53MROW7uTYyVKtjTSmQvO2RLAYWK6qD+Ta/gYQo6oXeXGM84FxQH2cxua3VfW/7uylE4EIIB4YoqpHCjqWlQgqiZNHYdO30G4oiJAw9Ql+XL+D/yVfSrwngn7RDRjUqREXN6trVUfGeCG/EoG3ieBSnBlIdwOL3c1dgfOAK1W1kK4jICLhQLiqrhCRGjgD064DRgAJqjpaRJ4Aaqnq4wUdyxJBJfX1o+jKT5CMU+yo1o43j1/KlydjqRNSk4EdG3FDp0ZE1q3m6yiNKbPOKRG4BzgPeACIcjdtBP6nqnvOMqBpwGvuraeq7nWTxTxVbVnQay0RVGLHD8Pq8bDsfUjYxrZmt/KP9NtY8OtBMhUujKjFx3d2ISjAZkY3JrdzTgTFHEwEsACIBnaqaqi7XYAjWY9zveYe4B6Axo0bd9qxY0dphWvKosxMiF8AIedDnWYkxP3IiZn/ZE71q7ltxP3gCeC9hdtp2zCEzpG2dpIxcJbdR71dfUxVE4oQSHVgMvCwqh7LOfeMqqqI5JmZVPVt4G1wSgTens9UUH5+0LRn9sPaJFE7Yze3/fY0vPQ66e1v4cufL2Bfpxg6R9YmI1PZdeQEK3cm2iI6xuRS2DiCQxQ+l5B6cRwge2DaZOBTVf3S3bxfRMJzVA0d8OZYxpwm6ipo0Rc2z4Jl7+P/01i+rlaXYz2cGVB/3nqYW95bgp9ApvsXvTsxhSe/dPZbMjCVWWFf4AXNMdQP+BOQ7s2J3Gqf94CNqjo2x66vgOHAaPfnNG+OZ8wZ/DzQsp9zS9yJHNxESPWqkJlJ5x9H8GhQQz4+eSmgvFblVf6Y+hAH00J59tuNlghMpVbkNgIR6QCMwRlZ/BbwT1U96MXrugE/AmuBTHfzX4ElwOdAY2AHTvfRAquarLHYFMnxQ/DFHbB9PmnqYbfWobEc5NOM3vxf+p0AtKxfg55RYfy5T0uq+Hs7vMaY8uVcB5QhIpEiMh5YChwGWqvqQ94kAQBVXaiqoqrtVDXGvc1Q1cOqepmqNlfVy4vS3mCMV6rVheFfcWOV1/gsoydN5AB+ogz1zCeMRBoGnaJBNZi98UB2EvhoUTzfrt3r48CNKR2FJgIRqSMi/wXigAbAxao6VFXzGmlsTJl145W98ffzIxWna6kCj1SZyvstFvPRoWF83/B9WDMJTUlk/JKdzNq433meKm/N38qq3xLJzLR+CqbiKazX0FPAYzgjfq9V1e9KIyhjSsJ1F3jI8F+AJ/P31dSGeubj6Xg71EjFb9MM2DgV8QvguxZ9Se7/AQC7jqQw+rs4VKFu9Sr0aFGPXlFhdG8eRkhVW1zHlH+FNRb/E0gBdgH3i8j9eT1JVQcUd2DGFLv5z+PJ1TvZIwpbfoD+L8PVY2HXLxD3NZKRRo2qVQA4f8FI1vdpxk8BXZm+K5gfNu5n8opdePyETk1q0TuqHr1a1qNF/eq2FKcplwpLBOOwpShNRbFrKWSknr4tI9XZDs7YhMZdnFuW1BNwYAPBqz6lD9AnLIrMi69iQ9hVfLu/BnPiDjL62zhGfxvHxHu60qVpHY4cTyUowEPVKja62ZQPPhlZfK6s15ApdYm/waYZEPc1xP8E/f8LHW+F5IMc3r6SWcebccOFkQR4/PjPjI1MWLKTZf93OYH+Ho6fSqdaoC2yY3zvXBemMaZyCz0fuvzBuZ1IAI9TbcSGqdSZMZIbg0JhTz+IuporW3Ti/FotCfR3SgS3vb+UxBOp9GpZj95R9YiNqG1dVE2ZYiUCY85F6gnYOgfivoFfv4WUI86iOn+Og6AQyMxk3JKd/LDxAIu3HiY1I5NqVTx0a16X3lH16NmyHvVrBvn6XZhKokxNOneuLBGYMikjHXb8BHtXwyUPOdvG3wipyRB1DSnN+vLTwWDmbDrA3LgD7D16EoA259Xk/p4XcHW7Mxf6m7pyt82NZIqNVQ0ZU9I8/tC0h3PL0rAjrPsSvnucqjzO5eHtubzzH9DrbmLT/iTmxh1kbtwBMtwLsvhDx3n5h1956LLmrNl1lCe/XEtKmtPd1eZGMiXFKiqNKUk9/gIPLIYHV0Cff4AnEJL3IyJE1fZwX+qHfH6VMKBtfQB2JJxgweZDBHj8GDNzU3YSyJKSlsGYmZt88U5MBWYlAmNKQ51mcMmfnFtWdeze1bD4DVj0ClQLg5ZX0SPqGpY9fil+VYLYk5gCQBhHfp8kj9Ds7cYUFysRGFPasgadNbkY/rINbngPIrrBuskwfjB+CZsBaBeSQnVO8JD/FC6UTTzo78zcrkCfsfN5+Ydf2bw/yUdvwlQk1lhsTFmRfsppbG7aC0TY8f4IwndMw4PiEeWkBnB5xqt0bdeK346ksDQ+AVUY2KEhY4fG+Dp6Uw5YY7ExZZ1/IDTrnf2wyRUPkvj5BkKOOW0CgZLGdyH/ofoQp8H4wLGTfLtuH/VrBgJw9EQaN7+3mMf7RdG9eVjpx2/KLasaMqasCmlI6IkdZM1eJED1lD2QtB8yM6k3/VaGZ06hX/gJAA4mn6RqgIcaQc5EeCt3HuG1OZvZdjDZN/GbcsNKBMaUVfOfB808fZv4wfznnN5Ixw/CD6OcW/1oLmjVn0k33gShoQAs3pbAC9//ygvf/0qr8Jpc0y6cq9qGE1m3Wmm/E1PGWRuBMWXVm91g39oztzdoC/cudO4n7oSNX8PGr2DnYrjlC7jgcmf78UPsrRbFjHX7mbF2L8t3HAGcAWxXtQ3n6rbhRFhSqFRsZLExFV3SPgiuA54A+OHvsHAshJwPrfpDq/7sqdGOGesP8M3avazcmQjAldENeOOWTr6N25QaSwTGVCYnEuDX72DDV85cSBmnoFakM7DNz4/diSl8u3YvwVX8ualLY9IyMhn+/lLu6h5J76j6vo7elBDrNWRMZRJcG2Jucm6nkmDz904js5/TP6Th1MHcFXI+tB4AafXYn5zJ8dQMMt0mie2HjjNrwz6uahtOo1rBPnwjpjRYIjCmogusAdE3/P44PRVqNnRmTF09HqpUp1HzK5h2zT3QxCkNLNxyiP/MiOM/M+Jof34o17QN58q2DSwpVFBWNWRMZZWeCvELYON0Jylc/nfocDMc2wvb5vFbWA++3pzCN2v3sG73MQBizg/lmnbhXNk2nIahVX38BkxRWRuBMSZ/mRnOzb8KLHsfvn4E/Pwh8lJoNYDf6vdi+tZ0vlmzl/V7nKTQq2UYH9zeOfsQNmV22WdtBMaY/Pl5nBtAxxHQoD1snOY0Nn/9MOf7+XP/Y1u4v+cFbN9/hBkbDpOR6VxEqioD/7eI9XuOkprhbLMps8uXUhtZLCLvi8gBEVmXY1ttEZklIpvdn7VKKx5jTD78/KBRJ2fa7IdWwr0/wdVjoarz7xn5/R08sOUeHgr8Gg5vJfFEGmt3O0kgjCNMrPIPwkgkJS2Df3+zkeOn0n38hkxhSq1qSEQuBZKBcaoa7W57HkhQ1dEi8gRQS1UfL+xYVjVkjA8tetVZbGfPCudxvTb8ZfclfJ7Rk3/6v8/Nntl8knEZT6ffkf2SxrWDadmgBlENamT/jKhTDX+PzXJTmnxeNaSqC0QkItfma4Ge7v2PgHlAoYnAGONDFz/o3BJ/g7ivYcNXNKl6krDkIwz2zMdPlKGeebyVfg0p1Rpx+8URxO1LIm7fMWZv3I9bo8QX915EbERtVv2WyJJth7m5axOqB1pttS/4+lOvr6p73fv7ABvJYkx5EXo+dL0Put5HwxW7eHTqw3hwBiIESjrzAx8hoXZX6lW5AgbcBDU6cjItgy0Hktm0L4lW4TUBWLT1EC9+/yvDL44A4L8/bGbR1kNu6aEmLd1ShCWJklNmPllVVRHJt55KRO4B7gFo3LhxqcVljCncdc39yfBfgCfz96U1/fz8qJd5GGb/HVpeCTUaELR7MdEHNhDdtCdUcRqn7+95ATd3aUJQgPO4RpA/qRmZfLF8F8dTfz9eo1pVs6uWWoeHcHW78FJ9jxWZrxPBfhEJV9W9IhIOHMjviar6NvA2OG0EpRWgMcYL85/Hk+s6zs/PA5Hd4fZvnKU4wRmvsPh1536N86BpD4jsQUi7odmvu6NbJHd0iyQzU9mdmELcviQ27Tvm/kxi7qaDNKkdnJ0Inpm2jpDgKjzapwUACcdTqRUcgGStBGcK5etE8BUwHBjt/pzm23CMMWdl11LISD19W0aqs716vd+39f03XHgnbJ8P2+bDrzOdWVNjhjn7V34CQaEQ0Q2/qqGcXzuY82sH06f177XGp9IzOJh0Kvtx8qkMAjxOzyRVpeeYuYgILeu7DdPhTuN0i/o1stdqABv3kFNp9hqagNMwXBfYDzwDTAU+BxoDO4AhqppQ2LGs15AxFURmJiTvg5rngSr8t50zhbb4wXkdILIHRF0Njc7o6JKn9IxMxi/dmV162LQvieQc3VcbhjrVS41qVeXzZbtISfu96qlqgIdnB7at0MnARhYbY8q+9FTYvQy2zXNKDLuXQec/QL//QEYa/PwaRFwK58X8PgCuAKrKriMpTlLYn5RdzbT/2EmOppw5vuG8kCDmjOyZ3V5R0VgiMMaUP6eSIP0UVKsLe1bB2z2c7YEhENENmvZ0ZlCt0aBIh4184hvy++YL8AjtGoVyYURtOkfWolOT2oRUDcjn2eWLz8cRGGNMkQXWcG7glAJGbobtC5wSw/b5sOkbqNfKSQT718PeNU4DdM3zCjzseaFV2Z2Ycsb2ejUCub5jQ37ZnsB7C7fx5nxFBFrWr0HnyNrOLaI29WoGFf979SErERhjyq+E7c6U2v5VYM6/YcHzzvY6zZ2E0LQntOjnrNqWw9SVu3nyy7UFthGkpGaw8rcj/LL9CL/EJ7Bi5xFOuN1ZVz3dh9DgKmzal0RQgB9N6pSPJT+tasgYU7FlZsKB9U7bwrZ5sGMRePzhL9ud9oS4GRBQFRp3hYCqTF25m/e/+5mnUsbwr6p/4c5+XQtsKE7LyGT9nmPE7T3GjZ2dsUx3fvgL2w8fZ86fewIwe+N+GoQEEdWgJh6/std91RKBMaZySU+FI9shrKXz+H8XwYEN4AmE8zs7JYZ9a531GDrdDteMLfIpthxI5lDyKbo2rUNmptLxX7NIPJFGjSB/YpvU4kK3KqltoxAC/X3fAG2JwBhTuZ1Kgh0/u2MY5sH+dU43Vc0E/yDo8QS0uALCWmUv6VlUu46c4Jf4BJZud25bDx4HINDfj5jzQ+kcWZu+bRoQ3TCkGN+Y9ywRGGNMTlPug7WTIDMN/AKcnwDBdZ0R0ZGXQosroebZT2VxKPkUy+ITWOq2M6zfc5TH+kZxX89mHDmeymtzt3BTl8Y0C6teTG+qYNZryBhjsiTtg/Vf/v7ln5kG/oFw2SjYu9opNayfAoNrQZvr4Ui8U5qIvBRCvB9wVrd6IP2iw+kX7SSTpJNp2bOvbjmYzCeLd9C3TQOahcGSbYeZumoPnSNrcWFE7dPWhy7pUdCWCIwxlc/8550qoZxU4fAWGPiWe38r1HCnttj0HXznzpBfu5mTEJr2cHokBXi/dnPOKS4ujKjNmlFX4HHnRNpx+ARfr97DhKU7AWcU9IURtQjw9+OrVXs4le7EWxKrv1nVkDGm8nmzm9NQnFuDtnDvwjO3Z2Y6Dc3b5zvjGOJ/gvQUeHwHBFaHLT84I5+bXAJBNc86rIxMJW7fMX7ZnsBSt0rpUPKpPJ/bMLQqPz3Ru0jHtzYCY4wpLhnpcOhXqN/aefzRACdJiMedI+lSuOAyZ/TzOVBVmj45I89R0AJsH311kY6XXyKwdeKMMaaoPP6/JwGAmz6H4V9D9z+Dnz8segV+fPH3/b+858yymp565rEKICKcF5p31VN+28+GtREYY8y5Cghyexp1B56CU8lw4pCz7+QxmPEYaAYEVIMmFzklhqhroE6zQg/9WN+WeY6Cfqxvy2IL3xKBMcYUt8Dqzg2cNoPHtkD8Qqd9YfsCmPU0BAQ7iSBpP2yY5iSHsJaQa0GdrAbhkuw1ZG0ExhhT2pL2Od1Vq9aCdV/CF7c726vXdxJC5KXQ+loICjn9NV/cDoM+/L03UxHZOAJjjCkrck6bHT0QGnb8vbSwfYEz0K3ZZU4i2L7ASQJb5zjtDPOfO6vpMApiicAYY3ytVoRz63jb72MYsgaurfwE1kz8/bmrPoUej591qSAv1mvIGGPKEhGoe8Hvj697A1pd63RNBWcg3PznivWUlgiMMaYsO34QNs90eh0BZKQ6pYKk/cV2CksExhhTluU5HUbxlgosERhjTFm2a6lTCsgpI9XZXkyssdgYY8qyvOY+KmZWIjDGmErOEoExxlRylgiMMaaSs0RgjDGVnCUCY4yp5MrlpHMichDYcZYvrwscKsZwSlp5itdiLTnlKd7yFCuUr3jPNdYmqhqWe2O5TATnQkSW5TX7XllVnuK1WEtOeYq3PMUK5SvekorVqoaMMaaSs0RgjDGVXGVMBG/7OoAiKk/xWqwlpzzFW55ihfIVb4nEWunaCIwxxpyuMpYIjDHG5GCJwBhjKrlKkwhE5H0ROSAi63wdS2FE5HwRmSsiG0RkvYj8ydcxFUREgkRkqYisduP9u69jKoyIeERkpYh87etYCiMi8SKyVkRWicgyX8dTEBEJFZEvRCRORDaKyEW+jik/ItLS/UyzbsdE5GFfx5UfEXnE/f9aJyITRCSo2I5dWdoIRORSIBkYp6rRvo6nICISDoSr6goRqQEsB65T1Q0+Di1PIiJANVVNFpEAYCHwJ1Vd7OPQ8iUijwKxQE1VvcbX8RREROKBWFUt84OeROQj4EdVfVdEqgDBqpro47AKJSIeYDfQRVXPdrBqiRGRhjj/V61VNUVEPgdmqOqHxXH8SlMiUNUFQIKv4/CGqu5V1RXu/SRgI9DQt1HlTx3J7sMA91ZmrzBEpBFwNfCur2OpSEQkBLgUeA9AVVPLQxJwXQZsLYtJIAd/oKqI+APBwJ7iOnClSQTllYhEAB2AJT4OpUBuVcsq4AAwS1XLcrwvA38BMgt5XlmhwPcislxE7vF1MAWIBA4CH7jVbu+KSDVfB+WlG4EJvg4iP6q6G3gB2AnsBY6q6vfFdXxLBGWYiFQHJgMPq+oxX8dTEFXNUNUYoBHQWUTKZPWbiFwDHFDV5b6OpQi6qWpH4ErgAbeasyzyBzoCb6hqB+A48IRvQyqcW4U1AJjk61jyIyK1gGtxku15QDURuaW4jm+JoIxy69onA5+q6pe+jsdbblXAXKCfj0PJzyXAALfe/TOgt4h84tuQCuZeDaKqB4ApQGffRpSvXcCuHKXBL3ASQ1l3JbBCVff7OpACXA5sV9WDqpoGfAlcXFwHt0RQBrmNr+8BG1V1rK/jKYyIhIlIqHu/KtAHiPNpUPlQ1SdVtZGqRuBUB8xR1WK7sipuIlLN7TCAW81yBVAme76p6j7gNxFp6W66DCiTHRxyGUYZrhZy7QS6ikiw+/1wGU7bYbGoNIlARCYAPwMtRWSXiNzp65gKcAlwK87ValbXtqt8HVQBwoG5IrIG+AWnjaDMd8ssJ+oDC0VkNbAU+EZVv/NxTAV5EPjU/VuIAf7j23AK5ibXPjhX2GWWW8r6AlgBrMX57i626SYqTfdRY4wxeas0JQJjjDF5s0RgjDGVnCUCY4yp5CwRGGNMJWeJwBhjKjlLBJWYiMwTkdd8dG4VkUG+OLc3ynp8xcGdxXKUF8+bKyK3lUJIeZ27wN+DO+vtDaUZU0VkiaCCcgd5/c+dwviUiOwXkdki0ifH0wYCT/oqxuImIh3dL47u+eyfKCKLSjuuguT3RSciH5aFKbJF5GrgfODTHNvi3bhVRFLcKacfcwc6lbZ/AqNFxL7LzoF9eBXXZJypCO4EWgDXAN8CdbKeoKoJ7uym5Y6I+Of+4nFnbF0F3JHH8+sA12EzjhbVn4APVTUj1/Z/4AwkbIUzGdp/AF9MiDcDqIEzTYQ5S5YIKiB3uofuwBOqOltVd6jqL6r6gqp+luN5p1UNuVd6fxORt9xFOnaJyGO5jt1CROaLyEkR2SQiV4lIsoiMcPdHuFeKsbleV1gRf7R7vBQ3judzLrwhIqPcqowRIrIVOAXkNbPlu8Bgd8K+nG5xXzNRRPqJyI8ickREEkRkpoi0KiA2r96TiDQUkc/c4x4RkW9EpHl+xy0KERkoImvczyfB/R3Uz7G/vzizk54Uke0i8m9xJlPL2l9PRKa5r98hImckyzzOGYYzx830PHYnqeo+VY1X1XeBNTjTX2S9tpl7vn0iclxEVogz4V/O4xf695ZHTI+LyCER6QrOZIc4yWBYYe/H5M8SQcWU7N4GSNFXMXoEZwh7R+A54HlxV5lyi99TgHSgKzACeAYILIaYj+NcybcC7seZB+ipXM+JBG4CBgPtgZN5HOdTwAMMzbX9TmCiqh7HSSAv45SYegJHgek5vziLSkSCcSbbOwn0AC7CmS74B3ffWRORBjgT5H2E8/lcCnycY39fnPf9GtAG53McxOnTO3wIXIDzxX4dcBsQUcipu+Ekz3znNhJHTzeutBy7quOUQPvg/K4mA1+KSFSuQ+T795bHeV7AmcKiR65Fj5bifObmbKmq3SrgDbgBZyGekzhzLL2As/pSzufMA17L8TgemJDrOZuBv7n3++IkgYY59l+MM1/+CPdxhPs4NtdxFBiU3+M84r8X2JLj8SicL5r6Xrz3T4BFOR5f6J6vSz7PrwZk4Ez3fEZ83rwnnC/fzbjTtrjbPMBhYEgBseb5OeB8cX/t3u/oPq9JPsdYAPxfrm3X4VwMCE7VoAKX5NjfxH3PowqI7WFgRx7b43ESRDKQ6h47Bbi4kN/L4qy/JW/+3nJ8PkOBD4Bf8/oMcKaQzgT8S/v/rKLcrERQQanqZJx5y/vjXJldDCwWkb8W8tI1uR7vAeq596OAPepOi+z6hWJY4EVEBonIQrcqIRl4CWic62m71Lupgt8FLspx9XkHsE7d6ZHdaovxIrJVRI4B+3FKx7nPVxSdcEosSW5VWTJOSaMW0OwcjguwGvgBWCcik0XkPrfaJue5n8o6r3vu8TgJrgHO1XomzpUzAOqsxFXYCldVybvUBTAWZ1K5Hjglob+ranZDvDizpj4vzrrbR9yYYjnzMy7o7y3LCzglt26a9wpiKTgJr9jW8K1sLBFUYKp6UlVnqeo/VPVinKmtRxVSBZKW67FStL+TrKSQ3ZArztoK+XLrez8DZuIkrg7A33CWvMzpuJcxzAe2AHeIMy32MNzlE11fA2HAH4Au7vnSgfw+F2/ekx9OQ3VMrlsL4K0CYk0CQvLYHoqTSFCnHvwK97YGp5prs4i0z3Huv+c6bzugOc6KYVmKOsPkIZxElpfDqrpFVX/GKX2OFJFeOfa/gFOF9384ySIGJxHl/oy9+XubhZPQ8puBtzZwUn9fLtUUkb+vAzClagPO7zwIp0hfVHHAeSJynqpmXU3Gcvo/btYXT3iObTGFHPcSYLeq/jNrg4g0OYv4AGcNZRF5H6fHSxzOle3H7nHr4JRs7lfVue62jhT8v+DNe1qBk3AOadHW6d2Ec0WfnajEWUi9PU51SPZ7wqni+1lE/gGsx6kyWe2eO0pVt+R1AhGJw/kddQYWudsa45QYC7ISCBORuqp6KL8nqeoRcTodvCQiHdxYuwHj3JIpbltVM5zqnaKagTNN9CQRUVX9KNf+aJzPwJwlKxFUQCJSR0TmiMgtItJORCJFZDDOOr2z9eyXvZyF88X1kYi0d6/kx+JcTTsVuqopOHXBj4tIGxG5GOfqsCC/Ag1F5GYRaSoi93HuvUA+Auq6556qqofd7UdwrnTvFpELRKQH8Kb7HvLk5Xv6FKeKaZqI9HA/80tF5MVCeg6NxSm5PCBOj6wYnHnma7s/EZGubu+aC90v8AE4ffuzFn35B3CTiPxDRKJFJMqtanvejX8T8B3wlohc5J7jQ5wqlYKsxFmDulshzwP4H9ASpxQAzu/0enHGdrTFabc566obdda3GAy8KWcObuuO8/7MWbJEUDEl43xx/QmnmmQ9Tg+S8ZzZm8ZrqpoJXI/TS2gpzpftv3GSQM665Kyuib/gVIv8rZDjTgfG4PTkWYPT0+Tps43TPeYenCvJWuQYO+C+h6E4VSfrgNdxqi9OFXLIAt+Tqp7A6c2zDWft2zicz6cWTvLJL84JwO3ubRnOF1oDoLs6K36BU0V0CU6V1mbgReCfqvqJe4yZwNVAL5zfy1KctYJ35jjVCGA7MAenO+h4nMbafLlVUu8DNxf0PPe5B3BKXaPc3mWP4iSRH3HaqBa798+amwyG4CS028DpsovT/vVBQa81BbOFacw5ceupV+H0qClPC8IbL4hIPZySx4Wqut3X8eQmImOAEFX1xWC2CsPaCEyRiMj1OI22m3G6VY7l93pqU8Go6gFxBp81xilRlDUHKLzq0RTCSgSmSNwi+d9w6qiP4IxFeMTLbp3GmDLIEoExxlRy1lhsjDGVnCUCY4yp5CwRGGNMJWeJwBhjKjlLBMYYU8n9PykMpf4xjn9+AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "singular_value = singular_value_list[-1]\n",
    "err_subfull, err_local, err_SVD = [], [], []\n",
    "U, D, V_dagger = np.linalg.svd(M, full_matrices=True)\n",
    "\n",
    "\n",
    "# Calculate the Frobenius-norm error\n",
    "for i in range(T):\n",
    "    lowrank_mat = np.matrix(U[:, :i]) * np.diag(D[:i])* np.matrix(V_dagger[:i, :])\n",
    "    recons_mat = np.matrix(U_learned[:, :i]) * np.diag(singular_value[:i])* np.matrix(V_dagger_learned[:i, :])\n",
    "    err_local.append(norm(lowrank_mat - recons_mat)) \n",
    "    err_subfull.append(norm(M_err - recons_mat))\n",
    "    err_SVD.append(norm(M_err- lowrank_mat))\n",
    "\n",
    "\n",
    "# Plot\n",
    "fig, ax = plt.subplots()\n",
    "ax.plot(list(range(1, T+1)), err_subfull, \"o-.\", \n",
    "        label = 'Reconstruction via VQSVD')\n",
    "ax.plot(list(range(1, T+1)), err_SVD, \"^--\", \n",
    "        label='Reconstruction via SVD')\n",
    "plt.xlabel('Singular Value Used (Rank)', fontsize = 14)\n",
    "plt.ylabel('Norm Distance', fontsize = 14)\n",
    "leg = plt.legend(frameon=True)\n",
    "leg.get_frame().set_edgecolor('k')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "---\n",
    "### Case 2: Image compression\n",
    "\n",
    "In order to fulfill image processing tasks, we first import the necessary package.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:47:14.486390Z",
     "start_time": "2021-03-09T03:47:14.466171Z"
    }
   },
   "outputs": [],
   "source": [
    "# Image processing package PIL\n",
    "from PIL import Image\n",
    "\n",
    "# Open the picture prepared in advance\n",
    "img = Image.open('./figures/MNIST_32.png')\n",
    "imgmat = np.array(list(img.getdata(band=0)), float)\n",
    "imgmat.shape = (img.size[1], img.size[0])\n",
    "imgmat = np.matrix(imgmat)/255"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:47:15.837676Z",
     "start_time": "2021-03-09T03:47:14.960968Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAEICAYAAACZA4KlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUsUlEQVR4nO3dbWxcVXoH8P8fx46NHSW2A4mdOC+khGAqNomsQEVAdOkugS8EtOLlA2Il1KwqkIq0+wFRbZdWVctWBUSliioUtNmKQtgFRFqhdilaKUVasWvSxCREJCE4L7bjJMRJnMRxYufph7nZOtF9jsczd2Zsn/9Psjw+z5yZx9fz+I7v8TmHZgYRmf6uqXQCIlIeKnaRSKjYRSKhYheJhIpdJBIqdpFIqNhFIqFil6KR/D7JUZJnxnzcXem85EozKp2ATBu/MbO1lU5CfDqzT3Mku0n+iGQXyVMkN5OsrXReUn4q9jg8DGAdgKUAbgXw/bQ7kVxL8mTgI3TmXkXyOMk9JH9MUu8aJxn9QOLwj2bWCwAk/x3AyrQ7mdknAOYU8PhbAfwhgAMAbgGwGcAIgL8r4LGkRHRmj8ORMbfPAWjI8sHNbL+ZfW1ml8zscwB/DeB7WT6HFE/FLr9H8s6rrqhf/XFnng9lAFjKXGXi9DZefs/M/gcFnPVJ3gdgm5n1k1wB4McAfpF1flIcndklC/cA6CJ5FsCHAN4D8LeVTUmuRi1eIRIHndlFIqFiF4mEil0kEip2kUiUdeitsbHRWltby/mUmbrmmvTfjV47AJD+cHPo4ujo6GhBsUIuuBaafyh26dKlCbUD4dxnzPBfqlVVVW7MU2gek11vby8GBgZSfzBFFTvJdQBeAVAF4F/M7IXQ/VtbW7F58+ZinrKiZs6cmdpeX1/v9qmpqXFjFy5ccGOnTp1yY6dPn3Zjw8PDqe2hgq6rq3Nj3vcMhAtwaGgotX1wcNDtMzIy4saam5sLinmFe+7cObfPxYsX3dhk98gjj7ixgt/Gk6wC8E8A7gPQDuAxku2FPp6IlFYxf7OvAbAv+b/oCwDeBvBANmmJSNaKKfYFAA6N+fpw0nYFkhtIdpLsHBgYKOLpRKQYJb8ab2YbzazDzDoaGxtL/XQi4iim2HsAtI35emHSJiKTUDHF/jsAN5JcSrIGwKMAtmSTlohkreChNzMbIfk0gP9CbujtDTPblVlmIpKposbZzexD5KY0isgkp3+XFYmEil0kEip2kUio2EUioWIXiYSKXSQSKnaRSKjYRSKhYheJhIpdJBIqdpFIqNhFIqFiF4mEil0kEip2kUio2EUioWIXiYSKXSQSKnaRSKjYRSKhYheJhIpdJBIqdpFIqNhFIqFiF4lEUTvCkOwGMAhgFMCImXVkkZSIZK+oYk/8sZkdz+BxRKSE9DZeJBLFFrsB+BXJz0huSLsDyQ0kO0l2DgwMFPl0IlKoYot9rZmtBnAfgKdI3nX1Hcxso5l1mFlHY2NjkU8nIoUqqtjNrCf5fBTA+wDWZJGUiGSv4GInWU9y1uXbAL4LYGdWiYlItoq5Gj8PwPskLz/Ov5nZf2aSlYhkruBiN7P9AL6VYS4iUkIaehOJhIpdJBIqdpFIqNhFIpHF/8ZH49SpU6ntPT09bp/z58+7sZkzZ7qx2bNnu7Frr73WjY2Ojqa29/f3u33OnDkz4ccDgAsXLrixwcHBCedx+PBhN1ZVVeXG2tvb3diKFStS2xcuXOj2qaurc2NTmc7sIpFQsYtEQsUuEgkVu0gkVOwikSj71XgzK/dTZubIkSOp7bt27XL7dHd3u7Ha2lo31tTUVFA/78p6b2+v2+fYsWNuzBuBAIChoSE35uWYzKVIdfDgQTe2f/9+N7ZkyRI3tn79+tT2e++91+2zYMECNzaV6cwuEgkVu0gkVOwikVCxi0RCxS4SCRW7SCQ0EWYCzp07l9p+6NAht09XV5cbO336tBsLTQoJDYd5Q17XXXed26ehocGNhSbJjIyMuLGlS5dOqH28PELHOBTzJt4MDw+7faYrndlFIqFiF4mEil0kEip2kUio2EUioWIXiURZh95IoqamppxPmam2trbU9jvvvNPts2jRIjfmzaIDgJ07/Z20+vr63Nj8+fNT2++44w63z2233TbhxwOAa67xzxXe8OCePXvcPlu3bnVjt9xyixsLDeetXbs2tb2lpcXtM5Vfo6FZheOe2Um+QfIoyZ1j2ppIfkRyb/JZ27OKTHL5vI3/GYB1V7U9C+BjM7sRwMfJ1yIyiY1b7Ga2FcCJq5ofALApub0JwPps0xKRrBV6gW6emV3+w/EIcju6piK5gWQnyc6BgYECn05EilX01XjLrTPlrjVlZhvNrMPMOhob9ae9SKUUWuz9JFsAIPl8NLuURKQUCh162wLgCQAvJJ8/yLfjVF5w0tt2KbRA4Zw5c9zY6tWr3dhDDz2Ud15jedtNXbx40e0TynHu3LlurL6+3o1dunQptf3Eiasv//y/vXv3urHQDLvQ8Oa8eel/YVZXV7t9pvJrNCSfobe3APwGwE0kD5N8Erki/w7JvQD+JPlaRCaxcc/sZvaYE7on41xEpIT077IikVCxi0RCxS4SCRW7SCS019sEeDOKQsM4M2fOdGOhPdtCC0SGZmWdPXs2tT20SGUoxxkz/JfI6OioG/P2gQstshmKeUN5QHj2XSjmmcqv0RCd2UUioWIXiYSKXSQSKnaRSKjYRSKhYheJhIbeMhAa3gkNXVVVVbmx0FBTSF1dXWp7KMdQHqHhtdBiJL29vanthexTB/gzDoHwrL3QsKhnOr5GAZ3ZRaKhYheJhIpdJBIqdpFIqNhFIlHWq/FmVvBV5sksdDU7NGkl1C+05lroGHpX42fNmuX2CV1xD109P3DggBvbt2/fhB8vtN5daJ0/b505wD8eIVP5NRoaSdCZXSQSKnaRSKjYRSKhYheJhIpdJBIqdpFIaCLMBHi5e2vTAeHhtVC/0HZNoWE5b+JHQ0OD28fbMgoADh8+7Ma++uorN7Z///7U9tA6c83NzW5syZIlBfULra/nmcqv0ZB8tn96g+RRkjvHtD1Psofk9uTj/tKmKSLFyudt/M8ArEtpf9nMViYfH2ablohkbdxiN7OtAPytN0VkSijmAt3TJLuSt/mN3p1IbiDZSbIztNiBiJRWocX+KoBlAFYC6APwondHM9toZh1m1tHY6P5OEJESK6jYzazfzEbN7BKA1wCsyTYtEclaQUNvJFvMrC/58kEAO0P3ny68obLQ8FooFhriCQ2HhdaT84blQn2Gh4fdWE9Pjxv74osv3Jg39BZaS2758uVubNWqVW4sNFvOm3VYyLZQU924xU7yLQB3A5hL8jCAnwC4m+RKAAagG8APSpeiiGRh3GI3s8dSml8vQS4iUkLxvZcRiZSKXSQSKnaRSKjYRSJR9llvoZlek503VBYaQgt9v6F+oZlthSxGGVpEcWhoyI0dP37cjYWG5fr7+1Pb29ra3D5NTU1u7Prrr3djoUUlve879HOZyq/REJ3ZRSKhYheJhIpdJBIqdpFIqNhFIqFiF4lEWYfeSE7p2UaFDL2FhI5FocfJG0Y7duyY2+fQoUNurLu7240dOXLEjV24cCG1PbTnXGtrqxsL7ecWGooMDSt6pvJrNDRsOHW/KxGZEBW7SCRU7CKRULGLRELFLhIJTYTJQKETYUJXfUPbFs2Y4f/Yzpw5M6F2APjyyy/dWOhqfGgrp9ra2tT20ISW+fPnu7HZs2cXlEdoLT/PdHyNAjqzi0RDxS4SCRW7SCRU7CKRULGLRELFLhKJfHaEaQPwcwDzkNsBZqOZvUKyCcBmAEuQ2xXmYTOLcpvW0NBbKBbaGsrbtggIDw2dPHkytf3rr792++zZs8eNhSa7hIYAvSG2lpYWt09okkzI6OioGytkDbrpKp8z+wiAH5pZO4DbATxFsh3AswA+NrMbAXycfC0ik9S4xW5mfWa2Lbk9CGA3gAUAHgCwKbnbJgDrS5SjiGRgQn+zk1wCYBWATwHMG7OT6xHk3uaLyCSVd7GTbADwLoBnzOyK/0+03B+mqX+cktxAspNk54kTJ4pKVkQKl1exk6xGrtDfNLP3kuZ+ki1JvAXA0bS+ZrbRzDrMrCO0CYCIlNa4xc7cZcvXAew2s5fGhLYAeCK5/QSAD7JPT0Syks+stzsAPA7gc5Lbk7bnALwA4B2STwI4AODhkmQ4iXjDaKGtlUJCQ1ehWV7e+m6AP0utq6vL7bNt2zY3dvRo6hs2AOHtmtrb21Pbb7rpJrdPQ0ODGwvNXhseHnZj3rBcaNhzuhq32M3sEwDeoOQ92aYjIqWi/6ATiYSKXSQSKnaRSKjYRSKhYheJRNkXnCx0q6TJwBtiCw29hb7fUL/Q0NDFixfdWE9PT2r7jh073D6hBSdDM9FWrFjhxtauXZvafuutt7p9QotserP5AGBwcNCNeUKLfU7l12iIzuwikVCxi0RCxS4SCRW7SCRU7CKRULGLRKKsQ29mVvAMscnAW6QwtHhhKBYa4hkZGXFjQ0NDbswbhgoNT4XyaG5udmPLly93Y97stnnz/AWNQnu2hfaqC80CrK6uTm0vdEh0sgt9Xzqzi0RCxS4SCRW7SCRU7CKRULGLRKLsE2Gmo0InVYSuIn/zzTdurK+vz42dOnUqtb22ttbt09ra6sZuuOEGN7Zs2bIJP2Z9fb3bx8sdCE/+CfF+Ntr+SUSmLRW7SCRU7CKRULGLRELFLhIJFbtIJMYdeiPZBuDnyG3JbAA2mtkrJJ8H8KcAjiV3fc7MPixVopNBIRNhvO2HgPDEj+PHj7sxb4snAOjv709tb2xsdPssXrzYjd18881urK2tzY15a9eF1tYrdEJRiDf0Fhouna7yGWcfAfBDM9tGchaAz0h+lMReNrN/KF16IpKVfPZ66wPQl9weJLkbwIJSJyYi2ZrQexmSSwCsAvBp0vQ0yS6Sb5D03yeKSMXlXewkGwC8C+AZMzsN4FUAywCsRO7M/6LTbwPJTpKdAwMDxWcsIgXJq9hJViNX6G+a2XsAYGb9ZjZqZpcAvAZgTVpfM9toZh1m1hG6SCQipTVusTN3GfR1ALvN7KUx7S1j7vYggJ3ZpyciWcnnavwdAB4H8DnJ7UnbcwAeI7kSueG4bgA/KEF+k4o3XFPoemahLY12797txvbu3evGvJl0CxcudPuE1pJbtGiRG2toaHBj58+fT20PDUWGhsNCs/ZCM+JmzEh/icc46y2fq/GfAEg7MtN6TF1kuonvPwtEIqViF4mEil0kEip2kUio2EUioQUnSyw0LOcNTwHAoUOH3NjBgwfdWFNTU2p7aIZae3u7G5szZ44bC/H+W9IbChtPaOgtNIzmzbILDfNN5e2fQnRmF4mEil0kEip2kUio2EUioWIXiYSKXSQSGnrLQGgmV2g/t8HBQTfW29vrxg4cOODGvGGo6upqt8/s2bPdWF1dnRsbGRlxY96wYmgILRQLLVQZGirzYjEuOBnfdywSKRW7SCRU7CKRULGLRELFLhIJFbtIJDT0NgHeME5o6G14eNiNnT171o0dO3asoNjcuXNT20OzzUILR4b6hb43bxHI0JBXTU2NGwsNr4UWnPSGIjX0JiLTlopdJBIqdpFIqNhFIqFiF4nEuFfjSdYC2ApgZnL/X5rZT0guBfA2gGYAnwF43Mz8WR+RKsU2Q6FJId5kktAV9/r6ejcWWkMvNAoxNDTkxjyFXo2PcSunQuRzZh8G8G0z+xZy2zOvI3k7gJ8CeNnM/gDAAIAnS5aliBRt3GK3nDPJl9XJhwH4NoBfJu2bAKwvRYIiko1892evSnZwPQrgIwBfAThpZpcnNB8GsKAkGYpIJvIqdjMbNbOVABYCWANgRb5PQHIDyU6Snd5a4iJSehO6Gm9mJwH8GsAfAZhD8vIFvoUAepw+G82sw8w6Ghsbi8lVRIowbrGTvI7knOR2HYDvANiNXNF/L7nbEwA+KFGOIpKBfCbCtADYRLIKuV8O75jZf5D8AsDbJP8GwP8CeL2EeU4K3uSJ0NppoeGp5uZmN7Z48eKCHnPRokWp7aFtnELr04WeKzTk5Q2VhSbPhGKhCTmhdfK8YcpQ7qHveSobt9jNrAvAqpT2/cj9/S4iU4D+g04kEip2kUio2EUioWIXiYSKXSQSDM1qyvzJyGMALu9dNBfA8bI9uU95XEl5XGmq5bHYzK5LC5S12K94YrLTzDoq8uTKQ3lEmIfexotEQsUuEolKFvvGCj73WMrjSsrjStMmj4r9zS4i5aW38SKRULGLRKIixU5yHckvSe4j+Wwlckjy6Cb5OcntJDvL+LxvkDxKcueYtiaSH5Hcm3wu+UofTh7Pk+xJjsl2kveXIY82kr8m+QXJXST/PGkv6zEJ5FHWY0KyluRvSe5I8virpH0pyU+TutlM0l+ON42ZlfUDQBVya9jdAKAGwA4A7eXOI8mlG8DcCjzvXQBWA9g5pu3vATyb3H4WwE8rlMfzAH5U5uPRAmB1cnsWgD0A2st9TAJ5lPWYACCAhuR2NYBPAdwO4B0Ajybt/wzgzybyuJU4s68BsM/M9ltunfm3ATxQgTwqxsy2AjhxVfMDyK3SC5RptV4nj7Izsz4z25bcHkRuJaQFKPMxCeRRVpaT+YrOlSj2BQAOjfm6kivTGoBfkfyM5IYK5XDZPDPrS24fATCvgrk8TbIreZtf1oUDSS5BbrGUT1HBY3JVHkCZj0kpVnSO/QLdWjNbDeA+AE+RvKvSCQG53+zI/SKqhFcBLENuQ5A+AC+W64lJNgB4F8AzZnZ6bKycxyQlj7IfEytiRWdPJYq9B0DbmK/dlWlLzcx6ks9HAbyPyi6z1U+yBQCSz0crkYSZ9ScvtEsAXkOZjgnJauQK7E0zey9pLvsxScujUsckee6TmOCKzp5KFPvvANyYXFmsAfAogC3lToJkPclZl28D+C6AneFeJbUFuVV6gQqu1nu5uBIPogzHhLnVH18HsNvMXhoTKusx8fIo9zEp2YrO5brCeNXVxvuRu9L5FYC/qFAONyA3ErADwK5y5gHgLeTeDl5E7m+vJ5HbIPNjAHsB/DeApgrl8a8APgfQhVyxtZQhj7XIvUXvArA9+bi/3MckkEdZjwmAW5FbsbkLuV8sfznmNftbAPsA/ALAzIk8rv5dViQSsV+gE4mGil0kEip2kUio2EUioWIXiYSKXSQSKnaRSPwffyIxG32ku9UAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAEICAYAAACZA4KlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUkklEQVR4nO3df4xV5Z3H8fe3yK/KYBGmgIgDAroCRSATUiq2rm4t2jTaZNNWN103caXp1mSbdP8w3WTrbvaPdrNt081u3NDV1DZdqbaauhvaqtQGTS064AhYrfwoWJAfQwUB5YcD3/3jHrID3u8zM+f+muH5vJLJ3Hm+99zzzJn7nXPv+d7neczdEZHz3/ta3QERaQ4lu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZULLLoJnZfDP7hZkdMLP3fFDDzC42s8fM7G0z22lmt7ein3I2JbuU8S7wMHBnEP8P4CQwGfgL4D4zm9ekvknA9Am684uZ7QD+HfhLoAP4OXCHux9vwL5mA1vc3fq0XQgcBOa7+2tF2w+A3e5+T737IAOnM/v56TPAcmAmsAD4q2p3MrNlZnYo8bWsxL6vAHrPJHrhJUBn9ha7oNUdkIb4N3d/A8DM/gdYWO1O7v4s8IE673sccPictreAtjrvRwZJZ/bz094+t9+hkoDNchQYf07beOBIE/sgVSjZM2Zm15rZ0cTXtSUe9jXgAjOb06ftauDl+vRaytLL+Iy5+zOUOOubmQGjgVHFz2MqD+cn3P1tM3sU+Ccz+2sqbyFuAT5St45LKTqzSxkdwDH+/2x9DPhdn/jfAGOB/cBDwBfdXWf2FlPpTSQTOrOLZELJLpIJJbtIJpTsIploault0qRJ3tHR0cxdimRl586dHDhwwKrFakp2M1sOfAcYAfyXu389df+Ojg5+/etf17LLIalSdq4uVe1Ixco+ZpnHSynbx2Y9Xn+PWe99DXUf+Uj8cYbSL+PNbASVoYw3AXOB28xsbtnHE5HGquU9+xJgq7tvd/eTwCoqn5QSkSGolmSfBvyhz8+7irazmNkKM+sys66enp4adicitWj41Xh3X+nune7e2d7e3ujdiUiglmTfDUzv8/OlRZuIDEG1JPsLwBwzm2lmo4DPAY/Xp1siUm+lS2/u3mtmdwO/oFJ6e0Ajm0SGrprq7O6+Glhdp76ISAPp47IimVCyi2RCyS6SCSW7SCaU7CKZULKLZELJLpIJJbtIJpTsIplQsotkQskukgklu0gmlOwimVCyi2RCyS6SCSW7SCaU7CKZULKLZELJLpIJJbtIJpTsIplQsotkQskukgklu0gmlOwimahpRRgz2wEcAU4Bve7eWY9OiUj91ZTshT919wN1eBwRaSC9jBfJRK3J7sATZrbezFZUu4OZrTCzLjPr6unpqXF3IlJWrcm+zN0XAzcBXzKzj557B3df6e6d7t7Z3t5e4+5EpKyakt3ddxff9wOPAUvq0SkRqb/SyW5mF5pZ25nbwI3A5np1TETqq5ar8ZOBx8zszOP8t7v/vC69EpG6K53s7r4duLqOfRGRBlLpTSQTSnaRTCjZRTKhZBfJRD0+G5+Nt956a1DtAO97X/z/dObMmWHs+PHjYWzEiBFh7MiRI1Xbd+3aFW5z+vTpMHby5Mkwtn379jB29OjRqu2p45E6jtu2bQtjF1wQP43nz59ftX3ZsmXhNrNmzQpjw5nO7CKZULKLZELJLpIJJbtIJpTsIplo+tV4d2/2Lutmx44dVdufe+65cJt9+/aFsblz55bqx6lTpwa9v9///vfhNqm/yeHDh8PY66+/HsaKMRPvceGFF4bbpK7Gd3d3h7He3t4wduutt1Ztv+KKK8JtLr/88jA2nOnMLpIJJbtIJpTsIplQsotkQskukgklu0gmNBBmEKLS0Pr168Ntfvazn4Wxt99+O4yNGTMmjKVKb9GgkPHjx5faV2pAzrhx48LYpZdeWrV9ypQp4TYTJkwIY1HZE9Ilu2hG44kTJ4bbnK90ZhfJhJJdJBNKdpFMKNlFMqFkF8mEkl0kE00vvaXmIBvqFi9eXLU9NZIrNbpq3bp1YSw12iy1v6iP119/fbjN7Nmzw1iqZJdalfeiiy6q2j569Ohwm9WrV4exX/3qV2Fs3rx5YeyGG26o2p6a/284P0dT+v2tzOwBM9tvZpv7tF1sZk+a2Zbie1wgFZEhYSD/wr4HLD+n7R5gjbvPAdYUP4vIENZvsrv7WuDNc5pvAR4sbj8I3FrfbolIvZV9czLZ3fcUt/dSWdG1KjNbYWZdZtZ14MCBkrsTkVrVfCXCK3MahfMauftKd+90985JkybVujsRKalssu8zs6kAxff99euSiDRC2dLb48AdwNeL7z8d6IbDecLJqJy0aNGicJtUiee2224LY2XLP1FpKzVCLVUOS42wmz59ehiLlqhKTRy5atWqMBYtJwWwdOnSMHbZZZeFschwfo6mDKT09hDwHHClme0yszupJPnHzWwL8GfFzyIyhPV7Znf36PRT/dMKIjIknZ8fFRKR91Cyi2RCyS6SCSW7SCa01tsgROWw1ISNqUkU29rawtjYsWPD2MmTJ8NYdHxHjhwZbpNy4sSJMJYafRdNpvnqq6+G22zYsCGMRWvHQbq8+cEPfrBq+6hRo8JtTp8+HcaGM53ZRTKhZBfJhJJdJBNKdpFMKNlFMqFkF8mE1nobhN7e3qrtqbJQKhaNDIPyJcrU/iKpUlNq9F2qj9u2bava/vzzz4fbHDp0KIwtXLgwjM2dOzeMRaXP1O+l0puIDGtKdpFMKNlFMqFkF8mEkl0kE02/Gl/mavFQEV2NT129TQ1AueCC+PC/++67YSx1DKOrzKk+puaZSw3IiQa7AKxfv75q+7PPPhtukzpWN910Uxj70Ic+FMai/qeOx3B+jqbozC6SCSW7SCaU7CKZULKLZELJLpIJJbtIJjQQZhCiElWqjJMqr6UGY6TKYan506LHTJXyUlKDdfbs2RPGotLb1q1bw21SSzUtWbIkjLW3t4exSFRGhfTvPJwNZPmnB8xsv5lt7tN2r5ntNrPu4uvmxnZTRGo1kJfx3wOWV2n/trsvLL5W17dbIlJv/Sa7u68F3mxCX0SkgWq5QHe3mW0sXuaHk6Ob2Qoz6zKzrp6enhp2JyK1KJvs9wGzgIXAHuCb0R3dfaW7d7p7Z5kLKSJSH6WS3d33ufspdz8NfBeIL5WKyJBQqvRmZlPd/Uzd5dPA5tT9zxdlllBKlddS5bDUdqlRWVEZMFXKSy1fdezYsTD29NNPh7ForrmJEyeG23z2s58NYwsWLAhjKWXmDTxf9ZvsZvYQcB0wycx2AV8DrjOzhYADO4AvNK6LIlIP/Sa7u99Wpfn+BvRFRBpIH5cVyYSSXSQTSnaRTCjZRTKhUW+DEI2GKjt6LTXyKjVaLlU2ivZXtpT3xz/+MYx1d3eHsR07dlRtv+SSS8JtUss4tbW1hbHUcYyWqEodj/NVfr+xSKaU7CKZULKLZELJLpIJJbtIJpTsIplQ6a0OUhNORqUfSJd/yq4DF0lNUnn06NEw9swzz4SxF154IYxFI+mWLl0abjNv3rwwlhpxePLkyTAWlRVzHPWmM7tIJpTsIplQsotkQskukgklu0gmdDV+EKKr7qkr7qlYI5aGKjNY54033ghjq1fH63+89tprYWz+/PlV26+77rpwm46OjjCWqnikrqxHv3dqm9TfbDjTmV0kE0p2kUwo2UUyoWQXyYSSXSQTSnaRTAxkRZjpwPeByVRWgFnp7t8xs4uBHwEzqKwK8xl3P9i4rrZeVJJJlWpSJZ5ULDWvWqqMFsUOHoz/NC+++GKpWKr/V1111aDaAUaPHh3GUstQpQbJRMfjfC2vpQzkzN4LfMXd5wIfBr5kZnOBe4A17j4HWFP8LCJDVL/J7u573H1DcfsI8AowDbgFeLC424PArQ3qo4jUwaDes5vZDGARsA6Y3Gcl171UXuaLyBA14GQ3s3HAT4Avu/vhvjGvvAGq+ibIzFaYWZeZdfX09NTUWREpb0DJbmYjqST6D9390aJ5n5lNLeJTgf3VtnX3le7e6e6d7e3t9eiziJTQb7Jb5ZLr/cAr7v6tPqHHgTuK23cAP61/90SkXgYy6u0a4PPAJjPrLtq+CnwdeNjM7gR2Ap9pSA+HgVQJKhqFBumRXO+8804YmzBhQhiLRsS9/PLL4TaPPPJIGHv11VfD2NVXXx3Grr322qrts2bNCrcpOy9cmRFsZUfRDWf9Jru7PwtEv/0N9e2OiDSKPkEnkgklu0gmlOwimVCyi2RCyS6SCU04OQipkWhlpMpyZZc7ikpsqfLamjVrwlhbW1sY+8QnPhHGrrnmmqrt48ePD7dJLUOVmpyzzFJZZUcqDmc6s4tkQskukgklu0gmlOwimVCyi2RCyS6SCZXeBiFVKisjtWZbavLFVAnw9ddfr9qemjjyyJEjYezGG28MYx/72MfC2CWXXFK1PTXaLKXs2nc5TiwZ0ZldJBNKdpFMKNlFMqFkF8mEkl0kE02/Gj+cr45GAy5SAydSV4pTsdRAmP37q07kC8CmTZuqtkdX6QFmzJgRxj71qU+FsdQcdKNGjaranppbL9oG0sf4xIkTYSz6m6Wu7g/n52iKzuwimVCyi2RCyS6SCSW7SCaU7CKZULKLZKLf0puZTQe+T2VJZgdWuvt3zOxe4C7gzNKsX3X31Y3q6PkoVf6J5k4D+M1vfhPGfvnLX1ZtT83vdvvtt4ex5cuXh7EpU6aEsagclhoIU2Yuuf5Ex7hsuXQ4G0idvRf4irtvMLM2YL2ZPVnEvu3u/9q47olIvQxkrbc9wJ7i9hEzewWY1uiOiUh9Deo9u5nNABYB64qmu81so5k9YGbx0qIi0nIDTnYzGwf8BPiyux8G7gNmAQupnPm/GWy3wsy6zKyrp6en2l1EpAkGlOxmNpJKov/Q3R8FcPd97n7K3U8D3wWWVNvW3Ve6e6e7d7a3t9er3yIySP0mu1UuW94PvOLu3+rTPrXP3T4NbK5/90SkXgZyNf4a4PPAJjPrLtq+CtxmZguplON2AF8YyA6H89I6Ufmn7Lxq73//+8PY3r17w9hTTz0Vxrq7u6u2X3nlleE2d911Vxi77LLLwtixY8fCWGTs2LFhLFVeS8VS8/VFz7fU32w4P0dTBnI1/lmg2m+vmrrIMKJP0IlkQskukgklu0gmlOwimVCyi2RCyz8NQlSSSS0LlZo4MjX54hNPPBHGNm+OP9IwbVr1YQuf/OQnw22uuuqqMFZ2dFg0eWTq8VLltdRxTI0ePHnyZNX21KSS9V7ma6jQmV0kE0p2kUwo2UUyoWQXyYSSXSQTSnaRTKj0NghlSm+pstCbb74ZxtauXRvGtmzZEsY6Ojqqtk+dOrVqO6TLUPUuUaVGm6WOVSpWdj29iEpvIjKsKdlFMqFkF8mEkl0kE0p2kUwo2UUy0fTSW6qUM9RF5Z9UOenw4cNhLDV6bcOGDWHs4MGDYWzBggVV21Olt9Ros2j0GqRLVGUm4Uyt9ZYqoaWeU6n+R8pOIDrU6cwukgklu0gmlOwimVCyi2RCyS6SiX6vxpvZGGAtMLq4/4/d/WtmNhNYBUwE1gOfd/fqE36d51JXilNX43fu3BnGUivetrW1hbFomafZs2eH25S9qp7arkzVpRGDXaLlplL9O3HiRBgbzgZyZj8BXO/uV1NZnnm5mX0Y+AbwbXefDRwE7mxYL0WkZv0mu1ccLX4cWXw5cD3w46L9QeDWRnRQROpjoOuzjyhWcN0PPAlsAw65e29xl11A9TmMRWRIGFCyu/spd18IXAosAf5koDswsxVm1mVmXan3oSLSWIO6Gu/uh4CngaXAB8zszAW+S4HdwTYr3b3T3Tvb29tr6auI1KDfZDezdjP7QHF7LPBx4BUqSf/nxd3uAH7aoD6KSB0MZCDMVOBBMxtB5Z/Dw+7+v2b2W2CVmf0z8CJw/0B2mFr+Z6iL+j5mzJhwm8mTJ4exOXPmhLEpU6aEsdSAkUWLFlVtnzlzZrhNyvHjx0v1IyrL9fb2Vm2HdAkttfxTqox29OjRqu1l5w0czvpNdnffCLznGeTu26m8fxeRYeD8/BcmIu+hZBfJhJJdJBNKdpFMKNlFMmHNnBPOzHqAM0O9JgEHmrbzmPpxNvXjbMOtHx3uXvXTa01N9rN2bNbl7p0t2bn6oX5k2A+9jBfJhJJdJBOtTPaVLdx3X+rH2dSPs503/WjZe3YRaS69jBfJhJJdJBMtSXYzW25mvzOzrWZ2Tyv6UPRjh5ltMrNuM+tq4n4fMLP9Zra5T9vFZvakmW0pvk9oUT/uNbPdxTHpNrObm9CP6Wb2tJn91sxeNrO/LdqbekwS/WjqMTGzMWb2vJm9VPTjH4v2mWa2rsibH5nZ4Bayc/emfgEjqMxhdzkwCngJmNvsfhR92QFMasF+PwosBjb3afsX4J7i9j3AN1rUj3uBv2vy8ZgKLC5utwGvAXObfUwS/WjqMQEMGFfcHgmsAz4MPAx8rmj/T+CLg3ncVpzZlwBb3X27V+aZXwXc0oJ+tIy7rwXePKf5Fiqz9EKTZusN+tF07r7H3TcUt49QmQlpGk0+Jol+NJVX1H1G51Yk+zTgD31+buXMtA48YWbrzWxFi/pwxmR331Pc3gvEU9w03t1mtrF4md/wtxN9mdkMKpOlrKOFx+ScfkCTj0kjZnTO/QLdMndfDNwEfMnMPtrqDkHlPzuVf0StcB8wi8qCIHuAbzZrx2Y2DvgJ8GV3P2spnWYekyr9aPox8RpmdI60Itl3A9P7/BzOTNto7r67+L4feIzWTrO1z8ymAhTf97eiE+6+r3iinQa+S5OOiZmNpJJgP3T3R4vmph+Tav1o1TEp9n2IQc7oHGlFsr8AzCmuLI4CPgc83uxOmNmFZtZ25jZwI7A5vVVDPU5lll5o4Wy9Z5Kr8GmacEysMpPn/cAr7v6tPqGmHpOoH80+Jg2b0blZVxjPudp4M5UrnduAv29RHy6nUgl4CXi5mf0AHqLycvBdKu+97qSyQOYaYAvwFHBxi/rxA2ATsJFKsk1tQj+WUXmJvhHoLr5ubvYxSfSjqccEWEBlxuaNVP6x/EOf5+zzwFbgEWD0YB5XH5cVyUTuF+hEsqFkF8mEkl0kE0p2kUwo2UUyoWQXyYSSXSQT/weYte4bQI3fgAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAEICAYAAACZA4KlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAASZUlEQVR4nO3df4xdZZ3H8feH2h9AK6XbsU5K6ZS2AmWBgYxdQQS2VoP800o2YmOUjWRrNpBogskSN1nZxGR1s2rchLgpP2I1rsiKRlzrQiEutEJopy5Oi0VoaRFK2xki/QHdpbT97h/3NE7rec7M3J/tPJ9XMpk7z/eee74c+plz5zz3nKOIwMzGvzM63YCZtYfDbpYJh90sEw67WSYcdrNMOOxmmXDYzTLhsNuYSfpzSY9Iel3Sn3xQQ9J/S/o/SW8WX7/rRJ92Iofd6vEO8CBwa8Vzbo+IqcXXhW3qyyo47OOMpJ2SvihpQNJ+ST+UNKWZ64iI30XEfcBzzXxday2HfXz6BHADMA+4DPjrsidJukbSvoqvaxro4Z+Kt/m/knR9A69jTfKuTjdgLfGvEfEagKSfAb1lT4qI9cD0Fqz/74DfAoeBTwI/k9QbEdtbsC4bJe/Zx6c9wx4fAqa2c+UR8UxEHIyItyNiNfAr4MZ29mB/ymHPmKQPDTtiXvb1oSatKgA16bWsTn4bn7GIWEcde31JAiYDk4qfp9ReLt6WNB34C+AJ4AhwM3At8PkmtW11ctitHnOBHcN+/l/gZaAHmAh8BbgIOAo8DyyPiBfa3KOdRL54hVke/De7WSYcdrNMOOxmmXDYzTLR1qPxM2fOjJ6ennau0iwrO3fu5PXXXy/9TENDYZd0A/AtYAJwb0R8ter5PT09bNy4sZFVmlmF97///cla3W/jJU0A7gY+BiwCVkhaVO/rmVlrNfI3+2JgW0S8FBGHgQeAZc1py8yarZGwzwZeGfbzq8XYCSStlNQvqX9oaKiB1ZlZI1p+ND4iVkVEX0T0dXV1tXp1ZpbQSNh3AXOG/XxeMWZmp6BGwr4RWChpnqRJ1C5S8HBz2jKzZqt76i0ijki6HXiE2tTb/RHha5KZnaIammePiDXAmib1YmYt5I/LmmXCYTfLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMuGwm2XCYTfLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMuGwm2XCYTfLhMNulgmH3SwTDrtZJhx2s0w47GaZcNjNMuGwm2WioTvCSNoJHASOAkcioq8ZTZlZ8zUU9sJfRsTrTXgdM2shv403y0SjYQ/gUUmbJK0se4KklZL6JfUPDQ01uDozq1ejYb8mIq4EPgbcJunak58QEasioi8i+rq6uhpcnZnVq6GwR8Su4vsg8BNgcTOaMrPmqzvsks6WNO34Y+CjwJZmNWZmzdXI0fhZwE8kHX+df4+I/2pKV2bWdHWHPSJeAi5vYi9m1kKeejPLhMNulgmH3SwTDrtZJprx2fhsHDx4sHT8wIEDyWXOOCP9+7S7u7uuPooZkFJvvPFG6fiuXbvqWlfqvxnglVdeGfNyx44dSy5TtR137NiRrFW95mWXXVY6vmTJkuQyCxcuTNZOZ96zm2XCYTfLhMNulgmH3SwTDrtZJnw0fgy2b99eOr5u3brkMnv27EnWFi1a1HBPJ3vttddKx1O9j2T//v3JWtUR8tQsxNSpU5PL7Nu3L1nbtGlTshYRydqyZctKxy+++OLkMj4ab2anNYfdLBMOu1kmHHazTDjsZplw2M0y4am3MRgcHCwdr5p6e/TRR5O1w4cPN9zTySZPnlw6XjXlNXHixGSt6kSeqtrcuXPHNA4wffr0ZG3btm3J2qFDh5K1888/v3R81qxZyWXGK+/ZzTLhsJtlwmE3y4TDbpYJh90sEw67WSY89TYGS5cuLR2fM2dOcplLL700WVu/fn2yduTIkdE3NszixeW320ud/QUwf/78utZVdbbZWWedVTpeNd34xBNPJGtV2+q9731vsnbdddeVjr/vfe9LLjNejbhnl3S/pEFJW4aNzZC0VtKLxfdzW9ummTVqNG/jvwPccNLYncDjEbEQeLz42cxOYSOGPSKeBP5w0vAyYHXxeDWwvLltmVmz1XuAblZE7C4e76F2R9dSklZK6pfUPzQ0VOfqzKxRDR+Nj9pRmuSRmohYFRF9EdHX1dXV6OrMrE71hn2vpG6A4nv5GSJmdsqod+rtYeAW4KvF9582raNTWOosrwULFiSXue2225K1z372s3X1Uc+U19lnn51cZtKkSXX1USW1rQYGBpLL3Hvvvcla1cUoly9fnqylptiqbqE1Xo1m6u0HwNPAhZJelXQrtZB/RNKLwNLiZzM7hY24Z4+IFYnSh5vci5m1kD8ua5YJh90sEw67WSYcdrNM+Ky3Jqi6YOOMGTPa2MmpI3URyOeffz65TH9/f7L2zjvvJGuXXHJJsvae97yndLxq6q1qavN05j27WSYcdrNMOOxmmXDYzTLhsJtlwmE3y4Sn3k5D9UwbtXuqafv27aXjVffFO3DgQLLW29ubrF1++eXJ2rvf/e5kLTfes5tlwmE3y4TDbpYJh90sEw67WSZ8NP40VM/R81Ycca+6RVXqpJbHHnssuczkyZOTtZtuuilZu+iii5K1M888s3R8vJ7sUsV7drNMOOxmmXDYzTLhsJtlwmE3y4TDbpYJT71Z3fbs2ZOsbdiwoXT8hRdeSC5zwQUXJGtLlixJ1qZNm5as5TjFljKa2z/dL2lQ0pZhY3dJ2iXp2eLrxta2aWaNGs3b+O8AN5SMfzMieouvNc1ty8yabcSwR8STwB/a0IuZtVAjB+hulzRQvM0/N/UkSSsl9UvqHxoaamB1ZtaIesP+bWA+0AvsBr6eemJErIqIvojo6+rqqnN1ZtaousIeEXsj4mhEHAPuARY3ty0za7a6pt4kdUfE7uLHjwNbqp5v49OaNenjsuvXry8d7+7uTi7zqU99KlmrusVT1dly9kcjhl3SD4DrgZmSXgW+DFwvqRcIYCfwuda1aGbNMGLYI2JFyfB9LejFzFrIH5c1y4TDbpYJh90sEw67WSZ81ptVnhlWdUumjRs3Jms7duwoHe/p6UkuU3UbpylTpiRrNjres5tlwmE3y4TDbpYJh90sEw67WSYcdrNMeOptnJFUOl41vVZ1z7Zf/OIXyVrqfm6Qvsfa4sXps6GvuOKKZO2MM7xfapS3oFkmHHazTDjsZplw2M0y4bCbZcJH48eZ1FH3o0ePJpcZHBxM1h566KFkrepWTpdeemnp+NKlS5PLzJ07N1mzxnnPbpYJh90sEw67WSYcdrNMOOxmmXDYzTIxmjvCzAG+C8yidgeYVRHxLUkzgB8CPdTuCvOJiHijda3acamTXSA99fbWW28ll3nqqaeSteeeey5ZqzqBZtGiRaXjvb29yWWstUazZz8C3BERi4APALdJWgTcCTweEQuBx4ufzewUNWLYI2J3RPy6eHwQ2ArMBpYBq4unrQaWt6hHM2uCMf3NLqkHuAJ4Bpg17E6ue6i9zTezU9Sowy5pKvAQ8IWIOOFi4lH7Q7H0j0VJKyX1S+ofGhpqqFkzq9+owi5pIrWgfz8iflwM75XUXdS7gdIPWEfEqojoi4i+rq6uZvRsZnUYMeyqHfq9D9gaEd8YVnoYuKV4fAvw0+a3Z2bNMpqz3j4IfBrYLOnZYuxLwFeBByXdCrwMfKIlHdqfqLqeXGpa7ve//31ymbvvvjtZS93GCWD+/PnJ2nXXXVc6fuGFFyaXsdYaMewRsR5ITex+uLntmFmr+BN0Zplw2M0y4bCbZcJhN8uEw26WCV9wcgyqzjZLqZomq3ddVa85MDBQOn7PPfckl9m0aVOy9vbbbydrK1asSNauv/760vEJEyYkl2n3tsqN9+xmmXDYzTLhsJtlwmE3y4TDbpYJh90sE556G4N2TuPUc2YbpM9ue/rpp5PLHDp0KFm7+uqrk7XU9BrAeeedVzreim3o6bXR8Z7dLBMOu1kmHHazTDjsZplw2M0y4aPxLdaKkzT27t2brG3evLl0/OWXX04ukzpyDvCZz3wmWbv44ouTtXe9q/yflk926Rzv2c0y4bCbZcJhN8uEw26WCYfdLBMOu1kmRpx6kzQH+C61WzIHsCoiviXpLuBvgOO3Zv1SRKxpVaOnq3qnhY4dO5asrVu3Lllbs6b8f0HVteSWL1+erN10003JWtWNOlP/3fVOoXl6rXGjmWc/AtwREb+WNA3YJGltUftmRPxL69ozs2YZzb3edgO7i8cHJW0FZre6MTNrrjH9zS6pB7gCeKYYul3SgKT7JZ3b7ObMrHlGHXZJU4GHgC9ExAHg28B8oJfanv/rieVWSuqX1D80NFT2FDNrg1GFXdJEakH/fkT8GCAi9kbE0Yg4BtwDLC5bNiJWRURfRPRVHdAxs9YaMeyqHT69D9gaEd8YNt497GkfB7Y0vz0za5bRHI3/IPBpYLOkZ4uxLwErJPVSm47bCXyuBf2Na1XTSfv370/WHnnkkWQtdSunSy65JLnMHXfckayde64PxYwXozkavx4omxz1nLrZacSfoDPLhMNulgmH3SwTDrtZJhx2s0z4gpMtVnWW19GjR5O1tWvXJmsbN25M1s4///zS8Ztvvjm5zPz585O11IUjob5bVLX77LVTpY9TgffsZplw2M0y4bCbZcJhN8uEw26WCYfdLBOeemuxqgtHvvnmm8naz3/+82Rt+/btydqCBQtKx6vOXqt3eq1Ksy84Wa8cp9hSvGc3y4TDbpYJh90sEw67WSYcdrNMOOxmmfDU2xhUTRulvPXWW8naU089laxt2LAhWauasjvnnHNKx2fNmpVcpt3TYc12uvffLt6zm2XCYTfLhMNulgmH3SwTDrtZJkY8Gi9pCvAkMLl4/o8i4suS5gEPAH8GbAI+HRGHW9lsp9VzZPfw4fQm2bp1a7K2b9++ZG3q1KnJ2sKFC0vHq27/1Ioj1u289puPuI/OaPbsbwNLIuJyardnvkHSB4CvAd+MiAXAG8CtLevSzBo2Ytij5vjE7sTiK4AlwI+K8dXA8lY0aGbNMdr7s08o7uA6CKwFtgP7IuJI8ZRXgdkt6dDMmmJUYY+IoxHRC5wHLAYuGu0KJK2U1C+pf2hoqL4uzaxhYzoaHxH7gF8CVwHTJR0/wHcesCuxzKqI6IuIvq6urkZ6NbMGjBh2SV2SphePzwQ+AmylFvq/Kp52C/DTFvVoZk0wmhNhuoHVkiZQ++XwYET8p6TfAg9I+grwP8B9LezztHXWWWcla1dffXWyNnPmzGRt9uz04ZGrrrqqdHzevHnJZeqdumr2CSitOKHFt3/6oxHDHhEDwBUl4y9R+/vdzE4D/gSdWSYcdrNMOOxmmXDYzTLhsJtlQu2cgpA0BLxc/DgTeL1tK09zHydyHyc63fqYGxGln15ra9hPWLHUHxF9HVm5+3AfGfbht/FmmXDYzTLRybCv6uC6h3MfJ3IfJxo3fXTsb3Yzay+/jTfLhMNulomOhF3SDZJ+J2mbpDs70UPRx05JmyU9K6m/jeu9X9KgpC3DxmZIWivpxeL7uR3q4y5Ju4pt8qykG9vQxxxJv5T0W0nPSfp8Md7WbVLRR1u3iaQpkjZI+k3Rxz8W4/MkPVPk5oeSJo3phSOirV/ABGrXsLsAmAT8BljU7j6KXnYCMzuw3muBK4Etw8b+GbizeHwn8LUO9XEX8MU2b49u4Mri8TTgBWBRu7dJRR9t3SaAgKnF44nAM8AHgAeBTxbj/wb87VhetxN79sXAtoh4KWrXmX8AWNaBPjomIp4E/nDS8DJqV+mFNl2tN9FH20XE7oj4dfH4ILUrIc2mzdukoo+2ipqmX9G5E2GfDbwy7OdOXpk2gEclbZK0skM9HDcrInYXj/cA6Xsst97tkgaKt/kt/3NiOEk91C6W8gwd3CYn9QFt3iatuKJz7gforomIK4GPAbdJurbTDUHtNzu1X0Sd8G1gPrUbguwGvt6uFUuaCjwEfCEiDgyvtXOblPTR9m0SDVzROaUTYd8FzBn2c/LKtK0WEbuK74PAT+jsZbb2SuoGKL4PdqKJiNhb/EM7BtxDm7aJpInUAvb9iPhxMdz2bVLWR6e2SbHufYzxis4pnQj7RmBhcWRxEvBJ4OF2NyHpbEnTjj8GPgpsqV6qpR6mdpVe6ODVeo+Hq/Bx2rBNVLsq5H3A1oj4xrBSW7dJqo92b5OWXdG5XUcYTzraeCO1I53bgb/vUA8XUJsJ+A3wXDv7AH5A7e3gO9T+9rqV2g0yHwdeBB4DZnSoj+8Bm4EBamHrbkMf11B7iz4APFt83djubVLRR1u3CXAZtSs2D1D7xfIPw/7NbgC2Af8BTB7L6/rjsmaZyP0AnVk2HHazTDjsZplw2M0y4bCbZcJhN8uEw26Wif8HhJAtV2Fb+ucAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Then we look at the effect of the classic singular value decomposition\n",
    "U, sigma, V = np.linalg.svd(imgmat)\n",
    "\n",
    "for i in range(5, 16, 5):\n",
    "    reconstimg = np.matrix(U[:, :i]) * np.diag(sigma[:i]) * np.matrix(V[:i, :])\n",
    "    plt.imshow(reconstimg, cmap='gray')\n",
    "    title = \"n = %s\" % i\n",
    "    plt.title(title)\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:47:15.858695Z",
     "start_time": "2021-03-09T03:47:15.847413Z"
    }
   },
   "outputs": [],
   "source": [
    "# Hyper-parameters\n",
    "N = 5           # Number of qubits\n",
    "T = 8           # Set the number of rank you want to learn\n",
    "ITR = 200       # Number of iterations\n",
    "LR = 0.02       # Learning rate\n",
    "SEED = 14       # Random number seed\n",
    "\n",
    "# Set the learning weight\n",
    "weight = np.arange(2 * T, 0, -2).astype('complex128')\n",
    "\n",
    "# Convert the image into numpy array\n",
    "def Mat_generator():\n",
    "    imgmat = np.array(list(img.getdata(band=0)), float)\n",
    "    imgmat.shape = (img.size[1], img.size[0])\n",
    "    lenna = np.matrix(imgmat)\n",
    "    return lenna.astype('complex128')\n",
    "\n",
    "M_err = Mat_generator()\n",
    "U, D, V_dagger = np.linalg.svd(Mat_generator(), full_matrices=True)\n",
    "\n",
    "# Set circuit parameters\n",
    "cir_depth = 40 # Circuit depth\n",
    "block_len = 1 # The length of each module"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:47:16.002083Z",
     "start_time": "2021-03-09T03:47:15.993385Z"
    }
   },
   "outputs": [],
   "source": [
    "# Define quantum neural network\n",
    "def U_theta():\n",
    "\n",
    "    # Initialize the network with Circuit\n",
    "    cir = Circuit(N)\n",
    "    \n",
    "    # Build a hierarchy:\n",
    "    for _ in range(cir_depth):\n",
    "        cir.ry()\n",
    "        cir.cnot()\n",
    "\n",
    "    return cir"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2021-03-09T03:53:07.440520Z",
     "start_time": "2021-03-09T03:47:21.094099Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "iter: 0 loss: -5052.6035\n",
      "iter: 10 loss: -108312.2634\n",
      "iter: 20 loss: -127067.9950\n",
      "iter: 30 loss: -138785.3241\n",
      "iter: 40 loss: -144992.7031\n",
      "iter: 50 loss: -148297.3650\n",
      "iter: 60 loss: -150532.9232\n",
      "iter: 70 loss: -152235.0095\n",
      "iter: 80 loss: -153425.8656\n",
      "iter: 90 loss: -154247.9781\n",
      "iter: 100 loss: -154813.1122\n",
      "iter: 110 loss: -155224.0510\n",
      "iter: 120 loss: -155530.3507\n",
      "iter: 130 loss: -155773.2695\n",
      "iter: 140 loss: -155976.5740\n",
      "iter: 150 loss: -156153.5143\n",
      "iter: 160 loss: -156310.1349\n",
      "iter: 170 loss: -156450.4223\n",
      "iter: 180 loss: -156576.0634\n",
      "iter: 190 loss: -156689.3533\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x297495eb6d0>"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYRklEQVR4nO2da2xdVXbH/ysmbzt2TF5OHEiAQASEycNECYkQHTQjQCMBUoXgA+IDmoyqQSrS9AOiUqFSPzBVAfGhogolmkxFeXQCIlSonRQNgpGAwYG8UzKQB8Fx4rwTQxJIsvrhnqhOdNbf1+fa5xr2/ydFud7L++x19tnL13f/vdY2d4cQ4ofPiHo7IIQoBwW7EImgYBciERTsQiSCgl2IRFCwC5EIl9XS2czuAPAcgAYA/+ruT7Hvb21t9fb29gGP09DQkNvOZMNz584NeBwAGDEi/vkXjXfZZfE0Mh/NLLSdPXs2tJ0/f37A14zmsL/rMT+Y/9F4bH7ZM2NjsTlm913EjyLroz9bBLvnyLZ3714cOXIk11g42M2sAcA/A/gJgK8AfGxma919W9Snvb0db731Vq6NTWJjY2Nu+3fffRf2+frrr0MbY+zYsaEtGq+lpSXswwJp5MiRoe3QoUOh7ZtvvhnwNSdMmBD2OXPmTGjr6ekJbaNGjQpt0TMbN25c2Ke3t7fQWKdPnw5tzc3Noa2IH0XWB8B9jN4s2PqI4uXOO++M+4SW/lkM4HN33+nu3wJ4BcDdNVxPCDGE1BLsMwDs7fP1V1mbEGIYMuQbdGa2wsw6zazzyJEjQz2cECKglmDvAjCzz9ftWdtFuPtKd+9w947W1tYahhNC1EItwf4xgDlmNtvMRgG4H8DawXFLCDHYFN6Nd/ezZvYIgP9GRXpb5e5bq+iX287kjmhnnckqTA4rKnlF47FdWLYbX7Qf8z+65tGjR8M+TAlhu+dF5CT2nNmO+4kTJwr1Y/MYweb31KlToY3tno8ePTq0RXNSRH5l91uTzu7ubwN4u5ZrCCHKQX9BJ0QiKNiFSAQFuxCJoGAXIhEU7EIkQk278QPl/PnzNOlioDAZh43DpCYmu0TSCpNcmDxYJKsJ4FJT1I9JkYyi2YORHywhhNnYPI4ZMya0Rc+GJRMxeY35waQyNo+RhFkkw47JoXpnFyIRFOxCJIKCXYhEULALkQgKdiESodTdeDMLd0eL1EFjyQXMVnRHNdrRZgkt7HpFa+ixa3777be57WyHme3uF0ngAIDx48fntrOdc/Zc9u/fH9qY0hCtN7bTzeaDPWuWNMTWdzSPRXbwGXpnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCKUngjDEhAioqq0LHGCSRORPAVw2SWSa4oeacROHmGJMEziicZj12N+sJNkLr/88tAW1Yw7duxY2IfBxiqSCFP0qKmi9emamppCW3T6D1uLUaKXEmGEEAp2IVJBwS5EIijYhUgEBbsQiaBgFyIRapLezGw3gJMAzgE46+4d/Xx/KIWwjKcoY4hJE0xeY2MxGS3KeGKZYUwKYbIW85/ZovltaWkJ+7Asuujorf76NTY25rZPmzYt7MOOeGInADMfI8mOSWhMlmMZdmztMMk5Wj9F1im7r8HQ2f/C3fOFQiHEsEG/xguRCLUGuwP4vZmtN7MVg+GQEGJoqPXX+OXu3mVmUwCsM7P/dff3+n5D9kNgBQBMnz69xuGEEEWp6Z3d3buy/3sAvAFgcc73rHT3DnfvmDhxYi3DCSFqoHCwm9l4M2u68BrATwFsGSzHhBCDSy2/xk8F8Ea21X8ZgH939/9iHUaMGBFmbLGCfJGNHbtUVCJhUll0TTYWy8hiY7EMKiZDRddkMg6TDtlzYZJXBJOGGGweWUZZdG9F5EuAPzPWr8hxXmzuo+uxtV042N19J4AfFe0vhCgXSW9CJIKCXYhEULALkQgKdiESQcEuRCKUXnAykpSYfBXZmHzCMpcYTD45fPhwbvvu3bvDPsePHw9tLBNtypQpoY1ljkXz293dHfbZs2dPaIvuGeCZXGweIzZs2BDa9u3bF9ra29tD27Jly3Lb586dG/ZhBT2ZhMaksqhAJFBsriJUcFIIoWAXIhUU7EIkgoJdiERQsAuRCKXuxgPxjmVU3w0ATp48mdvOatAVTWZgfvT09OS2b9y4MezDdrpZDbrx48eHNnZv0ZFYBw8eDPsw5YIpDezeIqWBKQnbtm0LbVu2xAmVs2bNCm3Rs46OFAOAK6+8MrSx9cESitgcjx07Nred7eCzxKYIvbMLkQgKdiESQcEuRCIo2IVIBAW7EImgYBciEUqX3iIphCXCRDJJb29v2IfJIKx2GkuCiOSTvXv3hn3Wr18f2pj/7JpMeoukTZZ0E0k/AHDoULHDfqIkGVZhmM19dIwTwH2M5FIGk0TZkVeR7Alw/6OELia/FqlBp3d2IRJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJEK/0puZrQLwMwA97n5j1tYK4FUAswDsBnCfux+txRGWwRbJSUwyYrXCGhsbBzwWENeFW758edhn0qRJoY1Jb7t27Qpt7GioSKZcsGBB2IfZmGTHJMBIAmIy2Zo1a0IbO/KKZdLdcsstue2sxh/LNit6/BPLlovWHFuLkR+11qD7DYA7Lml7DMA77j4HwDvZ10KIYUy/wZ6dt37pj9W7AazOXq8GcM/guiWEGGyKfmaf6u4XahPvR+VEVyHEMKbmDTqvfEgIPyiY2Qoz6zSzTva5SwgxtBQN9gNm1gYA2f/hHyC7+0p373D3DlYKSAgxtBQN9rUAHspePwTgzcFxRwgxVFQjvb0M4DYAk8zsKwBPAHgKwGtm9jCAPQDuq2awESNGhJk8TLaI5Boma7HsJCa9HTt2LLRFPrIChc3NzaGNZUIxWfHEiROhbcyYMbntTJKZPXt2aGMSJitiGd0bkxvZUVldXV2h7cYbbwxt0RphWZZFpTeW0ceO35o8eXJuO5urIkdG9Rvs7v5AYLp9wKMJIeqG/oJOiERQsAuRCAp2IRJBwS5EIijYhUiEUgtOuntYtLGIpMHkNZZlxApOsoJ9URFL1odJPKwfKzbIJJ7oXDxWePGLL74Ibe3t7YX8iM6IW7duXdhn8+bNoW3evHmhbdGiRaGNZbdFFJG1AL6umJQaFedksIy4CL2zC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhFKld7MDA0NDbk2JkNFUgiT15iUx2wsyyuyMamGXY/dM/Mxki+BWOpjtQSiTDmA31t0RhkQF4hkEiDL8poxY0ZoY5mFUSFT9lwYg11UEoifGfORSboRemcXIhEU7EIkgoJdiERQsAuRCAp2IRKh1N14IN5hZDu70c50kWQAgO9ms+SaIrumUfIMwO+ZHfEUKRpAPFesD1MFWD02lkDz7rvv5rZ/+OGHYR82V8uWLQttS5YsCW0TJkzIbS+q1rBnxtYO28Uvsr7ZWBF6ZxciERTsQiSCgl2IRFCwC5EICnYhEkHBLkQiVHP80yoAPwPQ4+43Zm1PAvg5gAvn/zzu7m9Xca1QAmIyQ3SEz+HDh+lYEUy2YLXfIomKJUAwyYvVHmPyDzv2Kromk/Ki47UAPh+nT58Obbt27cptZ3IdS2i59tprQ1tbW1toi+aRPTN2z2xdsaPDIgkQiI/zYglKETTxqor+vwFwR077s+4+P/vXb6ALIepLv8Hu7u8B0MHqQnzPqeUz+yNmtsnMVplZXFNYCDEsKBrszwO4GsB8AN0Ano6+0cxWmFmnmXWyz9hCiKGlULC7+wF3P+fu5wG8AGAx+d6V7t7h7h3sPHIhxNBSKNjNrO/2570AtgyOO0KIoaIa6e1lALcBmGRmXwF4AsBtZjYfgAPYDeAX1Q5YpPYXO1anCEzmYxlxUcYTuycmoTU1NYU29pGH2RobG3PbWQ23qF4cAGzcuDG0ffDBB6Ftx44due2zZs0K+yxdujS03XzzzaEtumcgPg6LPTMmKbLstaIya5FsyiJx1G+wu/sDOc0vDngkIURd0V/QCZEICnYhEkHBLkQiKNiFSAQFuxCJUHrByUiKYpJXJL2xQonMxiQSJstFcgfLoisqn7CMpyK2osULmWTU1dUV2qIsO5ahds0114S26BgngMubRYqSsj4se7DoeozGY88l6sPmQu/sQiSCgl2IRFCwC5EICnYhEkHBLkQiKNiFSIRSpbeGhgZaeC8iylxqaWkJ+zBZK8oyAvhZXpHcwWQVJpOxwoasIGJPT09oa21tzW0fN25c2Iexd+/e0Pbpp5+Gtt7e3tx2VjiSZcRNnBgXQ2L3FkllReVS9qzHjh0b2piEGT2zIplyVP4LLUKIHxQKdiESQcEuRCIo2IVIBAW7EIlQ6m78+fPncebMmVwbS4Rhu+cRLCGA7cSyGmNFdnbZfY0ePTq0MaWB7fBHigHbwd+5c2do2759e2hjysVVV12V237rrbeGfW666abQxnaZ9+3bF9qiHW22g8/WzlAQrR/mB1tXEXpnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCJUc/zTTAC/BTAVleOeVrr7c2bWCuBVALNQOQLqPnc/yq7l7oVkBlZ/jI0VwaQyNlYkdzAJikkkLHGiqJwX2VhizbFjx0Lb/v37Qxs7liuq8zdt2rSwz+TJk0Mbkym//PLL0BY9m6LSW5Facv1dM3rWRY54YlTzzn4WwK/c/XoASwD80syuB/AYgHfcfQ6Ad7KvhRDDlH6D3d273f2T7PVJANsBzABwN4DV2betBnDPEPkohBgEBvSZ3cxmAVgA4CMAU929OzPtR+XXfCHEMKXqYDezRgBrADzq7if62rzygST3Q4mZrTCzTjPrZEcDCyGGlqqC3cxGohLoL7n761nzATNry+xtAHL/+NrdV7p7h7t3RBU5hBBDT7/BbpUtwRcBbHf3Z/qY1gJ4KHv9EIA3B989IcRgUU062TIADwLYbGYbsrbHATwF4DUzexjAHgD31eIIk5MiGYf1YTJIUfkkyr5jfVidOZbNx2quManvs88+y21///33wz6bNm0KbawO2nXXXRfaFi5cmNvO5DUmTzE/2BxH8hUbq2iNQrau2DWjdczk12gsel+h5f87/xFAJPjd3l9/IcTwQH9BJ0QiKNiFSAQFuxCJoGAXIhEU7EIkQqkFJ4FYpmLyVSS9sT7MxrKJivRjkgsrYMlkEpYRxyTH6K8Ut27dGvZhBSeZrDV//vzQdvvt+UINO/7p9OnToY0dQxWtDyB+ZkUk1v76DXbWG5PeIh9pxl5oEUL8oFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJUKr05u6Fznpra2vLbT98+HDYh8kgTNJobm4ObUUyqJjtwIEDoY1lVzE5Lzr3jBWOZLLWokWLQtvSpUtD29Sp+YWLWPYau+cZM2aENlZMM1pvTC5lxS2LZuaxbL/oHD7mB1vfEXpnFyIRFOxCJIKCXYhEULALkQgKdiESofREmCKJCadOncptZ7vqRY/wYckY0S44S8RgCS3RLizAd+p7e3tD265du3Lb2RFPrN7dDTfcENrmzp0b2iZMmJDbfvDgwbAPey7sWC620x3dN9s5Z2uH7fwX2SFnsPVdRBnSO7sQiaBgFyIRFOxCJIKCXYhEULALkQgKdiESoV/pzcxmAvgtKkcyO4CV7v6cmT0J4OcALmgpj7v72/1cC2PGjMm1MZkhkqjGjRsX9ila3+3EiROhbbBr0EXyFAB0d3eHtm3btoW2o0eP5ra3tLSEfebNmxfa5syZE9pYLb9p06bltjc2NoZ9WCJMlOADAE1NTaGtCMwPJs1GaxsodnwV6xOtK/ZMqtHZzwL4lbt/YmZNANab2brM9qy7/1MV1xBC1JlqznrrBtCdvT5pZtsBxPmGQohhyYA+s5vZLAALAHyUNT1iZpvMbJWZxX+GJYSoO1UHu5k1AlgD4FF3PwHgeQBXA5iPyjv/00G/FWbWaWadUU1zIcTQU1Wwm9lIVAL9JXd/HQDc/YC7n3P38wBeALA4r6+7r3T3DnfvaG1tHSy/hRADpN9gt8r23osAtrv7M33a+9aKuhfAlsF3TwgxWFSzG78MwIMANpvZhqztcQAPmNl8VOS43QB+Uc2AUWYQk6iiPizbrGhdOCajRXXyWLYT++hy6NCh0LZ+/frQtnHjxtAW+cjktQULFoS29vb20MZknui+WdYYlY3IkUwnT54MbdGzLvKcAZ59x9YjI7pvNhbzP6Ka3fg/AsjzhmrqQojhhf6CTohEULALkQgKdiESQcEuRCIo2IVIhGFTcJJJCdERPix7rYgPAJddilyPSU1MAmRHMm3fvj20XXHFFbntrDjk8uXLQxvLRmSSV5QdFmV4ATyLMSo6ChR7Zgx2zwy2hlkmXbSOmR+RzMfWot7ZhUgEBbsQiaBgFyIRFOxCJIKCXYhEULALkQjDRnorctYbKzTIrseyiSKZD4gLCrKMPVaEkGVJMamGZctF0hYrpMlgchiTFaM5YffFxmJZb6yYZiQBsmKOTMpjchjzkV0zkmB11psQohAKdiESQcEuRCIo2IVIBAW7EImgYBciEUqV3s6dO4fjx4/n2pgMNWNG/gE0TCZjMBmKZdJFcgfLyDp8+HBo27FjR2jbvHlzaGOyUTQnLNuMXY/JSdOnTw9tBw8ezG1nch3LGpsyZUpoY3McSbBsLHbPo0ePDm1sHpubm0NbFBNsLRbJzNM7uxCJoGAXIhEU7EIkgoJdiERQsAuRCP3uxpvZGADvARidff/v3P0JM5sN4BUAlwNYD+BBd4+zHCrXokkjEdFuN9tRZbW4mA9shz/apWVKAkuEYTaWyMN2fSPYbnxbW1toY0lDvb29A7ax+WWJTSyRhO1aR+MVrQ3I/Ch6HFm0Hlkftr4jqnlnPwPgx+7+I1SOZ77DzJYA+DWAZ939GgBHATw84NGFEKXRb7B7hQs/pkdm/xzAjwH8LmtfDeCeoXBQCDE4VHs+e0N2gmsPgHUAvgBwzN0vKPtfAcj/yxchxLCgqmB393PuPh9AO4DFAOIi5JdgZivMrNPMOtnxxUKIoWVAu/HufgzAHwAsBdBiZhd2rNoBdAV9Vrp7h7t3tLa21uKrEKIG+g12M5tsZi3Z67EAfgJgOypB/5fZtz0E4M0h8lEIMQhUkwjTBmC1mTWg8sPhNXf/TzPbBuAVM/sHAJ8CeLGaASNJickWUY0xloDCpCuWRMDqoBWp+8Vqrk2YMCG0zZs3L7RNnTo1tM2cOTO3fdq0aWEfNo/s3thcRZIdmw8m5TFZjl0zkmeZ/MpkraJ15li/aK0yH9n6Dn3o7xvcfROABTntO1H5/C6E+B6gv6ATIhEU7EIkgoJdiERQsAuRCAp2IRLBmLQy6IOZHQSwJ/tyEoD4HKPykB8XIz8u5vvmx5XuPjnPUGqwXzSwWae7d9RlcPkhPxL0Q7/GC5EICnYhEqGewb6yjmP3RX5cjPy4mB+MH3X7zC6EKBf9Gi9EItQl2M3sDjP7zMw+N7PH6uFD5sduM9tsZhvMrLPEcVeZWY+ZbenT1mpm68zsz9n/E+vkx5Nm1pXNyQYzu6sEP2aa2R/MbJuZbTWzv87aS50T4kepc2JmY8zsT2a2MfPj77P22Wb2URY3r5pZXA00D3cv9R+ABlTKWl0FYBSAjQCuL9uPzJfdACbVYdxbASwEsKVP2z8CeCx7/RiAX9fJjycB/E3J89EGYGH2ugnADgDXlz0nxI9S5wSAAWjMXo8E8BGAJQBeA3B/1v4vAP5qINetxzv7YgCfu/tOr5SefgXA3XXwo264+3sALq3RdTcqhTuBkgp4Bn6Ujrt3u/sn2euTqBRHmYGS54T4USpeYdCLvNYj2GcA2Nvn63oWq3QAvzez9Wa2ok4+XGCqu3dnr/cDiCtUDD2PmNmm7Nf8If840Rczm4VK/YSPUMc5ucQPoOQ5GYoir6lv0C1394UA7gTwSzO7td4OAZWf7Kj8IKoHzwO4GpUzAroBPF3WwGbWCGANgEfd/aJztcuckxw/Sp8Tr6HIa0Q9gr0LQN/aSWGxyqHG3buy/3sAvIH6Vt45YGZtAJD931MPJ9z9QLbQzgN4ASXNiZmNRCXAXnL317Pm0uckz496zUk29jEMsMhrRD2C/WMAc7KdxVEA7gewtmwnzGy8mTVdeA3gpwC28F5DylpUCncCdSzgeSG4Mu5FCXNilaJvLwLY7u7P9DGVOieRH2XPyZAVeS1rh/GS3ca7UNnp/ALA39bJh6tQUQI2Athaph8AXkbl18HvUPns9TAqZ+a9A+DPAP4HQGud/Pg3AJsBbEIl2NpK8GM5Kr+ibwKwIft3V9lzQvwodU4A3IRKEddNqPxg+bs+a/ZPAD4H8B8ARg/kuvoLOiESIfUNOiGSQcEuRCIo2IVIBAW7EImgYBciERTsQiSCgl2IRFCwC5EI/wfi5DoyocN8sQAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Record the optimization process\n",
    "loss_list, singular_value_list = [], []\n",
    "U_learned, V_dagger_learned = [], []\n",
    "    \n",
    "net = NET(Mat_generator(), weight)\n",
    "\n",
    "# We use Adam optimizer for better performance\n",
    "# One can change it to SGD or RMSprop.\n",
    "opt = paddle.optimizer.Adam(learning_rate=LR, parameters=net.parameters())\n",
    "\n",
    "# Optimization loop\n",
    "for itr in range(ITR):\n",
    "\n",
    "    # Forward propagation to calculate loss function\n",
    "    U, V_dagger, loss, singular_values = net()\n",
    "\n",
    "    # Back propagation minimizes the loss function\n",
    "    loss.backward()\n",
    "    opt.minimize(loss)\n",
    "    opt.clear_grad()\n",
    "\n",
    "    # Record optimization intermediate results\n",
    "    loss_list.append(loss[0][0].numpy())\n",
    "    singular_value_list.append(singular_values)\n",
    "    \n",
    "    if itr% 10 == 0:\n",
    "        print('iter:', itr,'loss:','%.4f'% loss.numpy()[0])\n",
    "\n",
    "# Record the last two unitary matrices learned\n",
    "U_learned = U.numpy()\n",
    "V_dagger_learned = V_dagger.numpy()\n",
    "\n",
    "singular_value = singular_value_list[-1]\n",
    "mat = np.matrix(U_learned.real[:, :T]) * np.diag(singular_value[:T])* np.matrix(V_dagger_learned.real[:T, :])\n",
    "\n",
    "reconstimg = mat\n",
    "plt.imshow(reconstimg, cmap='gray')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "_______\n",
    "\n",
    "## References\n",
    "\n",
    "[1] Wang, X., Song, Z., & Wang, Y. Variational Quantum Singular Value Decomposition. [Quantum, 5, 483 (2021).](https://quantum-journal.org/papers/q-2021-06-29-483/)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": true
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}