VQSD.ipynb 10.1 KB
Notebook
Newer Older
Q
Quleaf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 概览\n",
    "- 在这个案例中,我们将展示如何通过Paddle Quantum训练量子神经网络来将量子态进行对角化。\n",
    "\n",
    "- 首先,让我们通过下面几行代码引入必要的library和package。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "import numpy\n",
    "from numpy import diag\n",
    "import scipy\n",
    "from paddle import fluid\n",
    "from paddle_quantum.circuit import UAnsatz\n",
    "from paddle.complex import matmul, trace, transpose"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "$\\newcommand{\\ket}[1]{|{#1}\\rangle}$\n",
    "$\\newcommand{\\bra}[1]{\\langle{#1}|}$\n",
    "\n",
    "## 背景\n",
    "量子态对角化算法(VQSD)[1-3] 目标是输出一个量子态的特征谱,即其所有特征值。求解量子态的特征值在量子计算中有着诸多应用,比如可以用于计算保真度和冯诺依曼熵,也可以用于主成分分析。\n",
    "- 量子态通常是一个混合态,表示如下 $\\rho_{\\text{mixed}} = \\sum_i P_i \\ket{\\psi_i}\\bra{\\psi_i}$\n",
    "- 作为一个简单的例子,我们考虑一个2量子位的量子态,它的特征谱为 $(0.5, 0.3, 0.1, 0.1)$, 我们先通过随机作用一个酉矩阵来生成具有这样特征谱的量子态。\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "scipy.random.seed(1)\n",
    "V = scipy.stats.unitary_group.rvs(4) # 随机生成一个酉矩阵\n",
    "D = diag([0.5, 0.3, 0.1, 0.1]) # 输入目标态rho的谱\n",
    "V_H = V.conj().T \n",
    "rho = V @ D @ V_H # 生成 rho\n",
    "print(rho) # 打印量子态 rho\n",
    "rho = rho.astype('complex64')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 搭建量子神经网络\n",
    "- 在这个案例中,我们将通过训练量子神经网络QNN(也可以理解为参数化量子电路)来学习量子态的特征谱。这里,我们提供一个预设的2量子位量子电路。\n",
    "\n",
    "- 我们预设一些该参数化电路的参数,比如宽度为2量子位。\n",
    "\n",
    "- 初始化其中的变量参数,${\\bf{\\theta }}$代表我们量子神经网络中的参数组成的向量。\n",
    "         "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%% \n"
    }
   },
   "outputs": [],
   "source": [
    "N = 2 # 量子神经网络的宽度\n",
    "SEED = 1 # 种子\n",
    "THETA_SIZE = 14 # 网络中的参数\n",
    "\n",
    "def U_theta(theta, N):\n",
    "    \"\"\"\n",
    "    U_theta\n",
    "    \"\"\"\n",
    "\n",
    "    cir = UAnsatz(N)\n",
    "    cir.rz(theta[0], 1)\n",
    "    cir.ry(theta[1], 1)\n",
    "    cir.rz(theta[2], 1)\n",
    "\n",
    "    cir.rz(theta[3], 2)\n",
    "    cir.ry(theta[4], 2)\n",
    "    cir.rz(theta[5], 2)\n",
    "\n",
    "    cir.cnot([2, 1])\n",
    "\n",
    "    cir.rz(theta[6], 1)\n",
    "    cir.ry(theta[7], 2)\n",
    "\n",
    "    cir.cnot([1, 2])\n",
    "\n",
    "    cir.rz(theta[8], 1)\n",
    "    cir.ry(theta[9], 1)\n",
    "    cir.rz(theta[10], 1)\n",
    "\n",
    "    cir.rz(theta[11], 2)\n",
    "    cir.ry(theta[12], 2)\n",
    "    cir.rz(theta[13], 2)\n",
    "\n",
    "    return cir.state\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## 配置训练模型 - 损失函数\n",
    "- 现在我们已经有了数据和量子神经网络的架构,我们将进一步定义训练参数、模型和损失函数。\n",
    "- 通过作用量子神经网络$U(\\theta)$在量子态$\\rho$后得到的量子态记为$\\tilde\\rho$,我们设定损失函数为$\\tilde\\rho$与用来标记的量子态$\\sigma=0.1 \\ket{00}\\bra{00} + 0.2 \\ket{01}\\bra{01} + 0.3 \\ket{10}\\bra{10} + 0.4 \\ket{11}\\bra{11}$的内积。\n",
    "- 具体的,设定损失函数为 $\\mathcal{L}(\\boldsymbol{\\theta})  = Tr(\\tilde\\rho\\sigma) .$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "sigma = diag([0.1, 0.2, 0.3, 0.4]) # 输入用来标记的量子态sigma\n",
    "sigma = sigma.astype('complex64')\n",
    "\n",
    "class Net(fluid.dygraph.Layer):\n",
    "    \"\"\"\n",
    "    Construct the model net\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(self, shape, rho, sigma, param_attr=fluid.initializer.Uniform(low=0.0, high=2 * numpy.pi, seed=SEED),\n",
    "                 dtype='float32'):\n",
    "        super(Net, self).__init__()\n",
    "\n",
    "        self.rho = fluid.dygraph.to_variable(rho)\n",
    "        self.sigma = fluid.dygraph.to_variable(sigma)\n",
    "\n",
    "        self.theta = self.create_parameter(shape=shape, attr=param_attr, dtype=dtype, is_bias=False)\n",
    "\n",
    "    def forward(self, N):\n",
    "        \"\"\"\n",
    "        Args:\n",
    "        Returns:\n",
    "            The loss.\n",
    "        \"\"\"\n",
    "\n",
    "        out_state = U_theta(self.theta, N)\n",
    "\n",
    "        # rho_tilde 是将U_theta作用在rho后得到的量子态 \n",
    "        rho_tilde = matmul(\n",
    "            matmul(transpose(\n",
    "                fluid.framework.ComplexVariable(out_state.real, -out_state.imag),\n",
    "                perm=[1, 0]\n",
    "            ), self.rho), out_state\n",
    "        )\n",
    "\n",
    "        # record the new loss\n",
    "        loss = trace(matmul(self.sigma, rho_tilde))\n",
    "\n",
    "        return loss.real, rho_tilde"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 配置训练模型 - 模型参数\n",
    "在进行量子神经网络的训练之前,我们还需要进行一些训练(超)参数的设置,例如学习速率与迭代次数。\n",
    "- 设定学习速率(learning rate)为0.1;\n",
    "- 设定迭代次数为50次。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "ITR = 50 #训练的总的迭代次数\n",
    "\n",
    "LR = 0.1 #学习速率"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 进行训练\n",
    "\n",
    "- 当训练模型的各项参数都设置完成后,我们将数据转化为Paddle动态图中的变量,进而进行量子神经网络的训练。\n",
    "- 过程中我们用的是Adam Optimizer,也可以调用Paddle中提供的其他优化器。\n",
    "- 我们将训练过程中的结果依次输出。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%% \n"
    }
   },
   "outputs": [],
   "source": [
    "with fluid.dygraph.guard():\n",
    "    # net\n",
    "    net = Net(shape=[THETA_SIZE], rho=rho, sigma=sigma)\n",
    "\n",
    "    # optimizer\n",
    "    opt = fluid.optimizer.AdagradOptimizer(learning_rate=LR, parameter_list=net.parameters())\n",
    "    # gradient descent loop\n",
    "    for itr in range(ITR):\n",
    "        loss, rho_tilde = net(N)\n",
    "\n",
    "        rho_tilde_np = rho_tilde.numpy()\n",
    "        loss.backward()\n",
    "        opt.minimize(loss)\n",
    "        net.clear_gradients()\n",
    "\n",
    "        print('iter:', itr, 'loss:', '%.4f' % loss.numpy()[0])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 总结\n",
    "根据上面训练得到的结果,通过大概50次迭代,我们就比较好的完成了对角化。\n",
    "我们可以通过打印$\n",
    "\\tilde{\\rho} = U(\\boldsymbol{\\theta})\\rho U^\\dagger(\\boldsymbol{\\theta})\n",
    "$\n",
    "的来验证谱分解的效果。特别的,我们可以验证它的对角线与我们目标谱是非常接近的。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": false,
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "print(rho_tilde_np)\n",
    "\n",
    "print(\"The estimated spectrum is:\", numpy.real(numpy.diag(rho_tilde_np)))\n",
    "print(\"The target spectrum is:\", numpy.diag(D))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "### 参考文献\n",
    "\n",
    "[1] R. Larose, A. Tikku, É. O. Neel-judy, L. Cincio, and P. J. Coles, “Variational quantum state diagonalization,” npj Quantum Inf., no. November 2018, 2019.\n",
    "\n",
    "[2] K. M. Nakanishi, K. Mitarai, and K. Fujii, “Subspace-search variational quantum eigensolver for excited states,” Phys. Rev. Res., vol. 1, no. 3, p. 033062, Oct. 2019.\n",
    "\n",
    "[3] M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, “Variational Quantum State Eigensolver,” arXiv:2004.01372, no. 1, pp. 1–14, Apr. 2020.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.10"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": []
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}