Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Parakeet
提交
907f777a
P
Parakeet
项目概览
PaddlePaddle
/
Parakeet
通知
10
Star
3
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Parakeet
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
907f777a
编写于
2月 11, 2020
作者:
C
chenfeiyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add conv1d, conv1dcell, conv1d_transpose in to customized layers
上级
fd9e198a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
157 addition
and
0 deletion
+157
-0
parakeet/modules/customized.py
parakeet/modules/customized.py
+157
-0
未找到文件。
parakeet/modules/customized.py
0 → 100644
浏览文件 @
907f777a
from
paddle
import
fluid
import
paddle.fluid.layers
as
F
import
paddle.fluid.dygraph
as
dg
class
Conv1D
(
dg
.
Conv2D
):
"""A standard Conv1D layer that use (B, C, T) data layout. It inherit Conv2D and
use (B, C, 1, T) data layout to compute 1D convolution. Nothing more.
NOTE: we inherit Conv2D instead of encapsulate a Conv2D layer to make it a simple
layer, instead of a complex one. So we can easily apply weight norm to it.
"""
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
dtype
=
'float32'
):
super
(
Conv1D
,
self
).
__init__
(
num_channels
,
num_filters
,
(
1
,
filter_size
),
stride
=
(
1
,
stride
),
padding
=
(
0
,
padding
),
dilation
=
(
1
,
dilation
),
groups
=
groups
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_cudnn
=
use_cudnn
,
act
=
act
,
dtype
=
dtype
)
def
forward
(
self
,
x
):
x
=
F
.
unsqueeze
(
x
,
[
2
])
x
=
super
(
Conv1D
,
self
).
forward
(
x
)
# maybe risky here
x
=
F
.
squeeze
(
x
,
[
2
])
return
x
class
Conv1DTranspose
(
dg
.
Conv2DTranspose
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
padding
=
0
,
stride
=
1
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
dtype
=
'float32'
):
super
(
Conv1DTranspose
,
self
).
__init__
(
num_channels
,
num_filters
,
(
1
,
filter_size
),
output_size
=
None
,
padding
=
(
0
,
padding
),
stride
=
(
1
,
stride
),
dilation
=
(
1
,
dilation
),
groups
=
groups
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_cudnn
=
use_cudnn
,
act
=
act
,
dtype
=
dtype
)
def
forward
(
self
,
x
):
x
=
F
.
unsqueeze
(
x
,
[
2
])
x
=
super
(
Conv1DTranspose
,
self
).
forward
(
x
)
# maybe risky here
x
=
F
.
squeeze
(
x
,
[
2
])
return
x
class
Conv1DCell
(
Conv1D
):
"""A causal convolve-1d cell. It uses causal padding, padding(receptive_field -1, 0).
But Conv2D in dygraph does not support asymmetric padding yet, we just pad
(receptive_field -1, receptive_field -1) and drop last receptive_field -1 steps in
the output.
It is a cell that it acts like an RNN cell. It does not support stride > 1, and it
ensures 1-to-1 mapping from input time steps to output timesteps.
"""
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
dilation
=
1
,
causal
=
False
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
dtype
=
'float32'
):
receptive_field
=
1
+
dilation
*
(
filter_size
-
1
)
padding
=
receptive_field
-
1
if
causal
else
receptive_field
//
2
self
.
_receptive_field
=
receptive_field
self
.
causal
=
causal
super
(
Conv1DCell
,
self
).
__init__
(
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
padding
,
dilation
=
dilation
,
groups
=
groups
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_cudnn
=
use_cudnn
,
act
=
act
,
dtype
=
dtype
)
def
forward
(
self
,
x
):
# it ensures that ouput time steps == input time steps
time_steps
=
x
.
shape
[
-
1
]
x
=
super
(
Conv1DCell
,
self
).
forward
(
x
)
if
x
.
shape
[
-
1
]
!=
time_steps
:
x
=
x
[:,
:,
:
time_steps
]
return
x
@
property
def
receptive_field
(
self
):
return
self
.
_receptive_field
def
start_sequence
(
self
):
if
not
self
.
causal
:
raise
ValueError
(
"Only causal conv1d shell should use start sequence"
)
if
self
.
receptive_field
==
1
:
raise
ValueError
(
"Convolution block with receptive field = 1 does not need"
" to be implemented as a Conv1DCell. Conv1D suffices"
)
self
.
_buffer
=
None
self
.
_reshaped_weight
=
F
.
reshape
(
self
.
weight
,
(
self
.
_num_filters
,
-
1
))
def
add_input
(
self
,
x_t
):
batch_size
,
c_in
,
_
=
x_t
.
shape
if
self
.
_buffer
is
None
:
self
.
_buffer
=
F
.
zeros
((
batch_size
,
c_in
,
self
.
receptive_field
),
dtype
=
x_t
.
dtype
)
self
.
_buffer
=
F
.
concat
([
self
.
_buffer
[:,
:,
1
:],
x_t
],
-
1
)
if
self
.
_dilation
[
1
]
>
1
:
input
=
F
.
strided_slice
(
self
.
_buffer
,
axes
=
[
2
],
starts
=
[
0
],
ends
=
[
self
.
receptive_field
],
strides
=
[
self
.
_dilation
[
1
]])
else
:
input
=
self
.
_buffer
input
=
F
.
reshape
(
input
,
(
batch_size
,
-
1
))
y_t
=
F
.
matmul
(
input
,
self
.
_reshaped_weight
,
transpose_y
=
True
)
y_t
=
y_t
+
self
.
bias
y_t
=
F
.
unsqueeze
(
y_t
,
[
-
1
])
return
y_t
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录