提交 64f7dbb7 编写于 作者: L liuyibing01

Merge branch 'master' into 'master'

add doc for parakeet.data, python2 compatability for DataIterator and  lazy CacheDataset

See merge request !32
# parakeet.data
This short guide shows the design of `parakeet.data` and how we use it in an experiment.
The most concepts of parakeet are Dataset, DataCargo, Sampler, batch function and DataIterator.
## Dataset
`Dataset`, as we assume here, is a list of examples. You gen get its length by `len(dataset)`(which means it length is known, and we have to implement `__len__` method for it). And you can access its items randomly by `dataset[i]`(which means we have to implement `__getitem__` method for it). Furthermore, you can iterable over it by `iter(dataset)` or `for example in dataset`, which means we have to implement `__iter__` method for it.
We provide an `DatasetMixin` object which provides the above methods. You can inherit `DatasetMixin` and implement `get_example` method for it to define your own dataset class. The `get_example` method is called by `__getitem__` method automatically.
We also provide several other datasets that is built based on other datasets.
### TupleDataset
Dataset that is combined by sevral datasets of the same length. An `example` of a tupledataset is a tuple of examples of its constituent datasets.
### DictDataset
Dataset that is combined by sevral datasets of the same length. An `example` of the tupledataset is a dict of examples of its constituent datasets.
### SliceDataset
SliceDataset is a slice of the base dataset.
### SubsetDataset
SubsetDataset is a subset of the base dataset.
### ChainDataset
ChainDataset is the concatenation of several datastes with the same fields.
### TransformDataset
A `TransformeDataset` is created by applying a `transform` to the base dataset. The `transform` is a callable object which takes an `example` of the base dataset and returns an `example` of the `TransformDataset`. The transform is lazy, which means it is applied to an example only when requested.
### FilterDataset
A `FilterDataset` is created by applying a `filter` to the base dataset. A `filter` is a predicate that takes an `example` of the base dataset and returns a boolean. Only those examples that pass the filter are included in the FilterDataset.
Note that filter is applied to all the examples in the base dataset when initializing a FilterDataset.
### CacheDataset
By default, we preprocess dataset lazily in `DatasetMixin.get_example`. An example is preprocessed only only requested. But `CacheDataset` caches a base dataset (preprocesses all examples and cache s them eagerly beforehand). When preprocessing the dataset is slow, you can use Cachedataset to speed it up, but caching may consume a lot of RAM if the dataset is large.
Finally, if preprocessing the dataset is slow and the processed dataset is too large to cache, you can write your own code to save them into files or databases and defines a Dataset to load them. Dataset is flexible, so you can create your own dataset painlessly.
## DataCargo
`DataCargo`, like `Dataset`, is an iterable of batches. We need datacargo because in deep learning, batching examples into batches exploits the computational resources of modern hardwares. You can iterate over it by `iter(datacargo)` or `for batch in datacargo`. It is an iterable but not an iterator, in that in can be iterated more than once.
### batch function
The concept of `batch` is something transformed from a list of examples. Assume that an example is a structure(tuple in python, or struct in C and C++) consists of several fields, then a list of examples is an array of structure(AOS, a dataset is an AOS). Then a batch here is a structure of arrays (SOA). Here is an example:
The table below represents 2 examples, each of which contains 5 fields.
| weight | height | width | depth | density |
| ------ | ------ | ----- | ----- | ------- |
| 1.2 | 1.1 | 1.3 | 1.4 | 0.8 |
| 1.6 | 1.4 | 1.2 | 0.6 | 1.4 |
The AOS representation and SOA representation of the table is show below.
AOS:
```text
[(1.2, 1,1, 1,3, 1,4, 0.8),
(1.6, 1.4, 1.2, 0.6, 1.4)]
```
SOA:
```text
([1,2, 1.6],
[1.1, 1.4],
[1.3, 1.2],
[1.4, 0.6],
[0.8, 1.4])
```
For the example above, converting an AOS to an SOA is trivial, just stack every field for all the examples. But it is not always the case. When a field contains a sequence, you may have to pad all the sequences to the largest length then stack them together. In some other cases, we may want to add a field for the batch, for example, `valid_length` for each example. So in general, a function to transform an AOS to SOA is needed to build a datacargo from a dataset. We call this the batch function (`batch_fn`), but you can use any callable if you need to.
Usually we need to define an callable object which stores all the options and configurations as its members as our `batch_fn`. Its `__call__` method transforms a list of examples into a batch.
### sampler
Equipped with a batch function(we have known __how to batch__), here comes the next question. __What to batch?__ We need to decide which examples to pick when creating a batch. Since a dataset is a list of examples, we only need to pick indices for the corresponding examples. A sampler object is what we use to do this.
A sampler is represented as an iterable of integers. Assume the dataset has `N` examples, then an iterable of intergers in the range`[0, N)` is an appropriate sampler for this dataset to build a `DataCargo`.
We provide several samplers that is ready to use. The `SequentialSampler`, `RandomSampler` and so on.
## DataIterator
`DataIterator` is what returned by `iter(data_cargo)`. It can only be iterated over once.
Here's the analogy.
```text
Dataset --> Iterable[Example] | iter(Dataset) -> Iterator[Example]
DataCargo --> Iterable[Batch] | iter(DataCargo) -> Iterator[Batch]
```
In order to construct an iterator of batches from an iterator of examples, we construct a DataCargo from a Dataset.
## Code Example
Here's an example of how we use `parakeet.data` to process the `LJSpeech` dataset with a wavenet model.
First, we would like to define a class which represents the LJSpeech dataset and loads it as-is. We try not to apply any preprocessings here.
```python
import csv
import numpy as np
import librosa
from pathlib import Path
import pandas as pd
from parakeet.data import DatasetMixin
from parakeet.data import batch_spec, batch_wav
class LJSpeechMetaData(DatasetMixin):
def __init__(self, root):
self.root = Path(root)
self._wav_dir = self.root.joinpath("wavs")
csv_path = self.root.joinpath("metadata.csv")
self._table = pd.read_csv(
csv_path,
sep="|",
header=None,
quoting=csv.QUOTE_NONE,
names=["fname", "raw_text", "normalized_text"])
def get_example(self, i):
fname, raw_text, normalized_text = self._table.iloc[i]
fname = str(self._wav_dir.joinpath(fname + ".wav"))
return fname, raw_text, normalized_text
def __len__(self):
return len(self._table)
```
We make this dataset simple in purpose. It requires only the path of the dataset, nothing more. It only loads the `metadata.csv` in the dataset when it is initialized, which includes file names of the audio files, and the transcriptions. We do not even load the audio files at `get_example`.
Then we define a `Transform` object to transform an example of `LJSpeechMetaData` into an example we want for the model.
```python
class Transform(object):
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels):
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.n_mels = n_mels
def __call__(self, example):
wav_path, _, _ = example
sr = self.sample_rate
n_fft = self.n_fft
win_length = self.win_length
hop_length = self.hop_length
n_mels = self.n_mels
wav, loaded_sr = librosa.load(wav_path, sr=None)
assert loaded_sr == sr, "sample rate does not match, resampling applied"
# Pad audio to the right size.
frames = int(np.ceil(float(wav.size) / hop_length))
fft_padding = (n_fft - hop_length) // 2 # sound
desired_length = frames * hop_length + fft_padding * 2
pad_amount = (desired_length - wav.size) // 2
if wav.size % 2 == 0:
wav = np.pad(wav, (pad_amount, pad_amount), mode='reflect')
else:
wav = np.pad(wav, (pad_amount, pad_amount + 1), mode='reflect')
# Normalize audio.
wav = wav / np.abs(wav).max() * 0.999
# Compute mel-spectrogram.
# Turn center to False to prevent internal padding.
spectrogram = librosa.core.stft(
wav,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
center=False)
spectrogram_magnitude = np.abs(spectrogram)
# Compute mel-spectrograms.
mel_filter_bank = librosa.filters.mel(sr=sr,
n_fft=n_fft,
n_mels=n_mels)
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
mel_spectrogram = mel_spectrogram
# Rescale mel_spectrogram.
min_level, ref_level = 1e-5, 20 # hard code it
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
mel_spectrogram = mel_spectrogram - ref_level
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
# Extract the center of audio that corresponds to mel spectrograms.
audio = wav[fft_padding:-fft_padding]
assert mel_spectrogram.shape[1] * hop_length == audio.size
# there is no clipping here
return audio, mel_spectrogram
```
`Transform` loads the audio file, and extracts `mel_spectrogram` from the audio. This transform actually needs a lot of options to specify, namely, the sample rate of the audio files, the `n_fft`, `win_length`, `hop_length` of `stft` transformation, and `n_mels` for transforming spectrogram into mel_spectrogram. So we define it as a callable class. You can also use a closure, or a `partial` if you want to.
Then we defines a functor to batch examples into a batch. Because the two fields ( `audio` and `mel_spectrogram`) are both sequences, batching them is not trivial. Also, because the wavenet model trains in audio clips of a fixed length(0.5 seconds, for example), we have to truncate the audio when creating batches. We want to crop it randomly when creating batches, instead of truncating it when preprocessing each example, because it allows for an audio to be truncated at different positions.
```python
class DataCollector(object):
def __init__(self,
context_size,
sample_rate,
hop_length,
train_clip_seconds,
valid=False):
frames_per_second = sample_rate // hop_length
train_clip_frames = int(
np.ceil(train_clip_seconds * frames_per_second))
context_frames = context_size // hop_length
self.num_frames = train_clip_frames + context_frames
self.sample_rate = sample_rate
self.hop_length = hop_length
self.valid = valid
def random_crop(self, sample):
audio, mel_spectrogram = sample
audio_frames = int(audio.size) // self.hop_length
max_start_frame = audio_frames - self.num_frames
assert max_start_frame >= 0, "audio is too short to be cropped"
frame_start = np.random.randint(0, max_start_frame)
# frame_start = 0 # norandom
frame_end = frame_start + self.num_frames
audio_start = frame_start * self.hop_length
audio_end = frame_end * self.hop_length
audio = audio[audio_start:audio_end]
return audio, mel_spectrogram, audio_start
def __call__(self, samples):
# transform them first
if self.valid:
samples = [(audio, mel_spectrogram, 0)
for audio, mel_spectrogram in samples]
else:
samples = [self.random_crop(sample) for sample in samples]
# batch them
audios = [sample[0] for sample in samples]
audio_starts = [sample[2] for sample in samples]
mels = [sample[1] for sample in samples]
mels = batch_spec(mels)
if self.valid:
audios = batch_wav(audios, dtype=np.float32)
else:
audios = np.array(audios, dtype=np.float32)
audio_starts = np.array(audio_starts, dtype=np.int64)
return audios, mels, audio_starts
```
When these 3 components are defined, we can start building our dataset with them.
```python
# building the ljspeech dataset
ljspeech_meta = LJSpeechMetaData(root)
transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels)
ljspeech = TransformDataset(ljspeech_meta, transform)
# split them into train and valid dataset
ljspeech_valid = SliceDataset(ljspeech, 0, valid_size)
ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech))
# building batch functions (they can be differnt for training and validation if you need it)
train_batch_fn = DataCollector(context_size, sample_rate, hop_length,
train_clip_seconds)
valid_batch_fn = DataCollector(
context_size, sample_rate, hop_length, train_clip_seconds, valid=True)
# building the data cargo
train_cargo = DataCargo(
ljspeech_train,
train_batch_fn,
batch_size,
sampler=RandomSampler(ljspeech_train))
valid_cargo = DataCargo(
ljspeech_valid,
valid_batch_fn,
batch_size=1, # only batch=1 for validation is enabled
sampler=SequentialSampler(ljspeech_valid))
```
Here comes the next question, how to bring batches into Paddle's computation. Do we need some adaptor to transform numpy.ndarray into Paddle's native Variable type? Yes.
First we can use `var = dg.to_variable(array)` to transform ndarray into Variable.
```python
for batch in train_cargo:
audios, mels, audio_starts = batch
audios = dg.to_variable(audios)
mels = dg.to_variable(mels)
audio_starts = dg.to_variable(audio_starts)
# your training code here
```
In the code above, processing of the data and training of the model runs in the same process. So the next batch starts to load after the training of the current batch has finished. There is actually better solution for this. Data processing and model training can be run asynchronously. To accomplish this, we would use `DataLoader` from Paddle. This serves as an adapter to transform an Iterable of batches into another iterable of batches, which runs asynchronously and transform each ndarray into `Variable`.
```python
# connects our data cargos with corresponding DataLoader
# now the data cargo is connected with paddle
with dg.guard(place):
train_loader = fluid.io.DataLoader.from_generator(
capacity=10,return_list=True).set_batch_generator(train_cargo, place)
valid_loader = fluid.io.DataLoader.from_generator(
capacity=10, return_list=True).set_batch_generator(valid_cargo, place)
# iterate over the dataloader
for batch in train_loader:
audios, mels, audio_starts = batch
# your trains cript here
```
......@@ -98,6 +98,8 @@ class DataIterator(object):
minibatch = self._batch_fn(minibatch) # list[Example] -> Batch
return minibatch
next = __next__ # Python 2 compatibility
def _next_index(self):
if six.PY3:
return next(self._sampler_iter)
......
......@@ -59,6 +59,20 @@ class TransformDataset(DatasetMixin):
return self._transform(in_data)
class CacheDataset(DatasetMixin):
def __init__(self, dataset):
self._dataset = dataset
self._cache = dict()
def __len__(self):
return len(self._dataset)
def get_example(self, i):
if not i in self._cache:
self._cache[i] = self._dataset[i]
return self._cache[i]
class TupleDataset(object):
def __init__(self, *datasets):
if not datasets:
......
......@@ -36,14 +36,3 @@ def freeze(layer):
def unfreeze(layer):
for param in layer.parameters():
param.trainable = True
def torch_summary(layer):
num_params = num_elements = 0
print("layer summary:")
for name, param in layer.named_parameters():
print("{}|{}|{}".format(name, param.shape, np.prod(param.shape)))
num_elements += np.prod(param.shape)
num_params += 1
print("layer has {} parameters, {} elements.".format(num_params,
num_elements))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册