提交 3bfd1123 编写于 作者: L liuyibing01

Update WaveFlow README

上级 855e3b2d
......@@ -8,14 +8,14 @@ PaddlePaddle dynamic graph implementation of [WaveFlow: A Compact Flow-based Mod
## Project Structure
```text
├── configs # yaml configuration files of preset model hyperparameters
├── benchmark.py # benchmark code to test the speed of batched speech synthesis
├── data.py # dataset and dataloader settings for LJSpeech
├── synthesis.py # script for speech synthesis
├── train.py # script for model training
├── utils.py # helper functions for e.g., model checkpointing
├── waveflow.py # WaveFlow model high level APIs
└── waveflow_modules.py # WaveFlow model implementation
├── configs # yaml configuration files of preset model hyperparameters
├── benchmark.py # benchmark code to test the speed of batched speech synthesis
├── synthesis.py # script for speech synthesis
├── train.py # script for model training
├── utils.py # helper functions for e.g., model checkpointing
├── parakeet/models/waveflow/data.py # dataset and dataloader settings for LJSpeech
├── parakeet/models/waveflow/waveflow.py # WaveFlow model high level APIs
└── parakeet/models/waveflow/waveflow_modules.py # WaveFlow model implementation
```
## Usage
......@@ -42,7 +42,6 @@ In this example, assume that the path of unzipped LJSpeech dataset is `./data/LJ
### Train on single GPU
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u train.py \
--config=./configs/waveflow_ljspeech.yaml \
......@@ -64,7 +63,6 @@ There are three ways to load a checkpoint and resume training (take an example t
### Train on multiple GPUs
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -u -m paddle.distributed.launch train.py \
--config=./configs/waveflow_ljspeech.yaml \
......@@ -88,7 +86,6 @@ Check the [Save and load checkpoint](#save-and-load-checkpoints) section on how
The following example will automatically load the latest checkpoint:
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u synthesis.py \
--config=./configs/waveflow_ljspeech.yaml \
......@@ -106,7 +103,6 @@ In this example, `--output` specifies where to save the synthesized audios and `
Use the following example to benchmark the speed of batched speech synthesis, which reports how many times faster than real-time:
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u benchmark.py \
--config=./configs/waveflow_ljspeech.yaml \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册