提交 14235cd1 编写于 作者: L lifuchen

modified synthesis of transformer_tts & fastspeech

上级 681d34b9
...@@ -28,6 +28,8 @@ from parakeet.models.fastspeech.fastspeech import FastSpeech ...@@ -28,6 +28,8 @@ from parakeet.models.fastspeech.fastspeech import FastSpeech
from parakeet.models.transformer_tts.utils import * from parakeet.models.transformer_tts.utils import *
from parakeet.models.wavenet import WaveNet, UpsampleNet from parakeet.models.wavenet import WaveNet, UpsampleNet
from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet
from parakeet.modules import weight_norm
from parakeet.models.waveflow import WaveFlowModule
from parakeet.utils.layer_tools import freeze from parakeet.utils.layer_tools import freeze
from parakeet.utils import io from parakeet.utils import io
...@@ -35,7 +37,13 @@ from parakeet.utils import io ...@@ -35,7 +37,13 @@ from parakeet.utils import io
def add_config_options_to_parser(parser): def add_config_options_to_parser(parser):
parser.add_argument("--config", type=str, help="path of the config file") parser.add_argument("--config", type=str, help="path of the config file")
parser.add_argument( parser.add_argument(
"--config_clarinet", type=str, help="path of the clarinet config file") "--vocoder",
type=str,
default="griffinlim",
choices=['griffinlim', 'clarinet', 'waveflow'],
help="vocoder method")
parser.add_argument(
"--config_vocoder", type=str, help="path of the vocoder config file")
parser.add_argument("--use_gpu", type=int, default=0, help="device to use") parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
parser.add_argument( parser.add_argument(
"--alpha", "--alpha",
...@@ -47,9 +55,9 @@ def add_config_options_to_parser(parser): ...@@ -47,9 +55,9 @@ def add_config_options_to_parser(parser):
parser.add_argument( parser.add_argument(
"--checkpoint", type=str, help="fastspeech checkpoint to synthesis") "--checkpoint", type=str, help="fastspeech checkpoint to synthesis")
parser.add_argument( parser.add_argument(
"--checkpoint_clarinet", "--checkpoint_vocoder",
type=str, type=str,
help="clarinet checkpoint to synthesis") help="vocoder checkpoint to synthesis")
parser.add_argument( parser.add_argument(
"--output", "--output",
...@@ -83,46 +91,62 @@ def synthesis(text_input, args): ...@@ -83,46 +91,62 @@ def synthesis(text_input, args):
pos_text = np.arange(1, text.shape[1] + 1) pos_text = np.arange(1, text.shape[1] + 1)
pos_text = np.expand_dims(pos_text, axis=0) pos_text = np.expand_dims(pos_text, axis=0)
text = dg.to_variable(text) text = dg.to_variable(text).astype(np.int64)
pos_text = dg.to_variable(pos_text) pos_text = dg.to_variable(pos_text).astype(np.int64)
_, mel_output_postnet = model(text, pos_text, alpha=args.alpha) _, mel_output_postnet = model(text, pos_text, alpha=args.alpha)
result = np.exp(mel_output_postnet.numpy()) if args.vocoder == 'griffinlim':
mel_output_postnet = fluid.layers.transpose( #synthesis use griffin-lim
fluid.layers.squeeze(mel_output_postnet, [0]), [1, 0]) wav = synthesis_with_griffinlim(
mel_output_postnet = np.exp(mel_output_postnet.numpy()) mel_output_postnet,
basis = librosa.filters.mel(cfg['audio']['sr'], cfg['audio']['n_fft'], sr=cfg['audio']['sr'],
cfg['audio']['num_mels']) n_fft=cfg['audio']['n_fft'],
inv_basis = np.linalg.pinv(basis) num_mels=cfg['audio']['num_mels'],
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output_postnet)) power=cfg['audio']['power'],
hop_length=cfg['audio']['hop_length'],
# synthesis use clarinet win_length=cfg['audio']['win_length'])
wav_clarinet = synthesis_with_clarinet( elif args.vocoder == 'clarinet':
args.config_clarinet, args.checkpoint_clarinet, result, place) # synthesis use clarinet
writer.add_audio(text_input + '(clarinet)', wav_clarinet, 0, wav = synthesis_with_clarinet(mel_output_postnet, args.config_vocoder,
args.checkpoint_vocoder, place)
elif args.vocoder == 'waveflow':
wav = synthesis_with_waveflow(mel_output_postnet, args,
args.checkpoint_vocoder, place)
else:
print(
'vocoder error, we only support griffinlim, clarinet and waveflow, but recevied %s.'
% args.vocoder)
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
cfg['audio']['sr']) cfg['audio']['sr'])
if not os.path.exists(os.path.join(args.output, 'samples')): if not os.path.exists(os.path.join(args.output, 'samples')):
os.mkdir(os.path.join(args.output, 'samples')) os.mkdir(os.path.join(args.output, 'samples'))
write(
os.path.join(os.path.join(args.output, 'samples'), 'clarinet.wav'),
cfg['audio']['sr'], wav_clarinet)
#synthesis use griffin-lim
wav = librosa.core.griffinlim(
spec**cfg['audio']['power'],
hop_length=cfg['audio']['hop_length'],
win_length=cfg['audio']['win_length'])
writer.add_audio(text_input + '(griffin-lim)', wav, 0, cfg['audio']['sr'])
write( write(
os.path.join( os.path.join(
os.path.join(args.output, 'samples'), 'grinffin-lim.wav'), os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
cfg['audio']['sr'], wav) cfg['audio']['sr'], wav)
print("Synthesis completed !!!") print("Synthesis completed !!!")
writer.close() writer.close()
def synthesis_with_clarinet(config_path, checkpoint, mel_spectrogram, place): def synthesis_with_griffinlim(mel_output, sr, n_fft, num_mels, power,
hop_length, win_length):
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = np.exp(mel_output.numpy())
basis = librosa.filters.mel(sr, n_fft, num_mels)
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
wav = librosa.core.griffinlim(
spec**power, hop_length=hop_length, win_length=win_length)
return wav
def synthesis_with_clarinet(mel_output, config_path, checkpoint, place):
mel_spectrogram = np.exp(mel_output.numpy())
with open(config_path, 'rt') as f: with open(config_path, 'rt') as f:
config = yaml.safe_load(f) config = yaml.safe_load(f)
...@@ -136,62 +160,86 @@ def synthesis_with_clarinet(config_path, checkpoint, mel_spectrogram, place): ...@@ -136,62 +160,86 @@ def synthesis_with_clarinet(config_path, checkpoint, mel_spectrogram, place):
# only batch=1 for validation is enabled # only batch=1 for validation is enabled
with dg.guard(place): fluid.enable_dygraph(place)
# conditioner(upsampling net) # conditioner(upsampling net)
conditioner_config = config["conditioner"] conditioner_config = config["conditioner"]
upsampling_factors = conditioner_config["upsampling_factors"] upsampling_factors = conditioner_config["upsampling_factors"]
upsample_net = UpsampleNet(upscale_factors=upsampling_factors) upsample_net = UpsampleNet(upscale_factors=upsampling_factors)
freeze(upsample_net) freeze(upsample_net)
residual_channels = teacher_config["residual_channels"] residual_channels = teacher_config["residual_channels"]
loss_type = teacher_config["loss_type"] loss_type = teacher_config["loss_type"]
output_dim = teacher_config["output_dim"] output_dim = teacher_config["output_dim"]
log_scale_min = teacher_config["log_scale_min"] log_scale_min = teacher_config["log_scale_min"]
assert loss_type == "mog" and output_dim == 3, \ assert loss_type == "mog" and output_dim == 3, \
"the teacher wavenet should be a wavenet with single gaussian output" "the teacher wavenet should be a wavenet with single gaussian output"
teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels,
n_mels, filter_size, loss_type, log_scale_min) filter_size, loss_type, log_scale_min)
# load & freeze upsample_net & teacher # load & freeze upsample_net & teacher
freeze(teacher) freeze(teacher)
student_config = config["student"] student_config = config["student"]
n_loops = student_config["n_loops"] n_loops = student_config["n_loops"]
n_layers = student_config["n_layers"] n_layers = student_config["n_layers"]
student_residual_channels = student_config["residual_channels"] student_residual_channels = student_config["residual_channels"]
student_filter_size = student_config["filter_size"] student_filter_size = student_config["filter_size"]
student_log_scale_min = student_config["log_scale_min"] student_log_scale_min = student_config["log_scale_min"]
student = ParallelWaveNet(n_loops, n_layers, student_residual_channels, student = ParallelWaveNet(n_loops, n_layers, student_residual_channels,
n_mels, student_filter_size) n_mels, student_filter_size)
stft_config = config["stft"] stft_config = config["stft"]
stft = STFT( stft = STFT(
n_fft=stft_config["n_fft"], n_fft=stft_config["n_fft"],
hop_length=stft_config["hop_length"], hop_length=stft_config["hop_length"],
win_length=stft_config["win_length"]) win_length=stft_config["win_length"])
lmd = config["loss"]["lmd"] lmd = config["loss"]["lmd"]
model = Clarinet(upsample_net, teacher, student, stft, model = Clarinet(upsample_net, teacher, student, stft,
student_log_scale_min, lmd) student_log_scale_min, lmd)
io.load_parameters(model=model, checkpoint_path=checkpoint) io.load_parameters(model=model, checkpoint_path=checkpoint)
if not os.path.exists(args.output): if not os.path.exists(args.output):
os.makedirs(args.output) os.makedirs(args.output)
model.eval() model.eval()
# Rescale mel_spectrogram. # Rescale mel_spectrogram.
min_level, ref_level = 1e-5, 20 # hard code it min_level, ref_level = 1e-5, 20 # hard code it
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram)) mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
mel_spectrogram = mel_spectrogram - ref_level mel_spectrogram = mel_spectrogram - ref_level
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1) mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
mel_spectrogram = dg.to_variable(mel_spectrogram) mel_spectrogram = dg.to_variable(mel_spectrogram)
mel_spectrogram = fluid.layers.transpose(mel_spectrogram, [0, 2, 1]) mel_spectrogram = fluid.layers.transpose(mel_spectrogram, [0, 2, 1])
wav_var = model.synthesis(mel_spectrogram) wav_var = model.synthesis(mel_spectrogram)
wav_np = wav_var.numpy()[0] wav_np = wav_var.numpy()[0]
return wav_np return wav_np
def synthesis_with_waveflow(mel_output, args, checkpoint, place):
#mel_output = np.exp(mel_output.numpy())
mel_output = mel_output.numpy()
fluid.enable_dygraph(place)
args.config = args.config_vocoder
args.use_fp16 = False
config = io.add_yaml_config_to_args(args)
mel_spectrogram = dg.to_variable(mel_output)
mel_spectrogram = fluid.layers.transpose(mel_spectrogram, [0, 2, 1])
# Build model.
waveflow = WaveFlowModule(config)
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
for layer in waveflow.sublayers():
if isinstance(layer, weight_norm.WeightNormWrapper):
layer.remove_weight_norm()
# Run model inference.
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
return wav.numpy()[0]
if __name__ == '__main__': if __name__ == '__main__':
......
# train model # train model
CUDA_VISIBLE_DEVICES=0 \
python -u synthesis.py \ python -u synthesis.py \
--use_gpu=1 \ --use_gpu=1 \
--alpha=1.0 \ --alpha=1.0 \
--checkpoint='./checkpoint/fastspeech/step-120000' \ --checkpoint='./checkpoint/fastspeech1024/step-160000' \
--config='configs/ljspeech.yaml' \ --config='configs/ljspeech.yaml' \
--config_clarine='../clarinet/configs/config.yaml' \
--checkpoint_clarinet='../clarinet/checkpoint/step-500000' \
--output='./synthesis' \ --output='./synthesis' \
--vocoder='waveflow' \
--config_vocoder='../waveflow/checkpoint/waveflow_res64_ljspeech_ckpt_1.0/waveflow_ljspeech.yaml' \
--checkpoint_vocoder='../waveflow/checkpoint/waveflow_res64_ljspeech_ckpt_1.0/step-3020000' \
#--vocoder='clarinet' \
#--config_vocoder='../clarinet/configs/clarinet_ljspeech.yaml' \
#--checkpoint_vocoder='../clarinet/checkpoint/step-500000' \
if [ $? -ne 0 ]; then if [ $? -ne 0 ]; then
echo "Failed in synthesis!" echo "Failed in synthesis!"
......
...@@ -28,6 +28,10 @@ from parakeet.models.transformer_tts.utils import * ...@@ -28,6 +28,10 @@ from parakeet.models.transformer_tts.utils import *
from parakeet import audio from parakeet import audio
from parakeet.models.transformer_tts import Vocoder from parakeet.models.transformer_tts import Vocoder
from parakeet.models.transformer_tts import TransformerTTS from parakeet.models.transformer_tts import TransformerTTS
from parakeet.modules import weight_norm
from parakeet.models.waveflow import WaveFlowModule
from parakeet.modules.weight_norm import WeightNormWrapper
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet
from parakeet.utils import io from parakeet.utils import io
...@@ -44,6 +48,14 @@ def add_config_options_to_parser(parser): ...@@ -44,6 +48,14 @@ def add_config_options_to_parser(parser):
"--checkpoint_transformer", "--checkpoint_transformer",
type=str, type=str,
help="transformer_tts checkpoint to synthesis") help="transformer_tts checkpoint to synthesis")
parser.add_argument(
"--vocoder",
type=str,
default="griffinlim",
choices=['griffinlim', 'wavenet', 'waveflow'],
help="vocoder method")
parser.add_argument(
"--config_vocoder", type=str, help="path of the vocoder config file")
parser.add_argument( parser.add_argument(
"--checkpoint_vocoder", "--checkpoint_vocoder",
type=str, type=str,
...@@ -82,31 +94,32 @@ def synthesis(text_input, args): ...@@ -82,31 +94,32 @@ def synthesis(text_input, args):
model=model, checkpoint_path=args.checkpoint_transformer) model=model, checkpoint_path=args.checkpoint_transformer)
model.eval() model.eval()
with fluid.unique_name.guard():
model_vocoder = Vocoder(
cfg['train']['batch_size'], cfg['vocoder']['hidden_size'],
cfg['audio']['num_mels'], cfg['audio']['n_fft'])
# Load parameters.
global_step = io.load_parameters(
model=model_vocoder, checkpoint_path=args.checkpoint_vocoder)
model_vocoder.eval()
# init input # init input
text = np.asarray(text_to_sequence(text_input)) text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text), [0]) text = fluid.layers.unsqueeze(dg.to_variable(text).astype(np.int64), [0])
mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32) mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32)
pos_text = np.arange(1, text.shape[1] + 1) pos_text = np.arange(1, text.shape[1] + 1)
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0]) pos_text = fluid.layers.unsqueeze(
dg.to_variable(pos_text).astype(np.int64), [0])
pbar = tqdm(range(args.max_len)) pbar = tqdm(range(args.max_len))
for i in pbar: for i in pbar:
pos_mel = np.arange(1, mel_input.shape[1] + 1) pos_mel = np.arange(1, mel_input.shape[1] + 1)
pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0]) pos_mel = fluid.layers.unsqueeze(
dg.to_variable(pos_mel).astype(np.int64), [0])
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model( mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
text, mel_input, pos_text, pos_mel) text, mel_input, pos_text, pos_mel)
mel_input = fluid.layers.concat( mel_input = fluid.layers.concat(
[mel_input, postnet_pred[:, -1:, :]], axis=1) [mel_input, postnet_pred[:, -1:, :]], axis=1)
global_step = 0
mag_pred = model_vocoder(postnet_pred) for i, prob in enumerate(attn_probs):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
_ljspeech_processor = audio.AudioProcessor( _ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg['audio']['sr'], sample_rate=cfg['audio']['sr'],
...@@ -122,45 +135,130 @@ def synthesis(text_input, args): ...@@ -122,45 +135,130 @@ def synthesis(text_input, args):
symmetric_norm=False, symmetric_norm=False,
max_norm=1., max_norm=1.,
mel_fmin=0, mel_fmin=0,
mel_fmax=None, mel_fmax=8000,
clip_norm=True, clip_norm=True,
griffin_lim_iters=60, griffin_lim_iters=60,
do_trim_silence=False, do_trim_silence=False,
sound_norm=False) sound_norm=False)
# synthesis with cbhg if args.vocoder == 'griffinlim':
wav = _ljspeech_processor.inv_spectrogram( #synthesis use griffin-lim
fluid.layers.transpose(fluid.layers.squeeze(mag_pred, [0]), [1, 0]) wav = synthesis_with_griffinlim(postnet_pred, _ljspeech_processor)
.numpy()) elif args.vocoder == 'wavenet':
global_step = 0 # synthesis use wavenet
for i, prob in enumerate(attn_probs): wav = synthesis_with_wavenet(postnet_pred, args)
for j in range(4): elif args.vocoder == 'waveflow':
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255) # synthesis use waveflow
writer.add_image( wav = synthesis_with_waveflow(postnet_pred, args,
'Attention_%d_0' % global_step, args.checkpoint_vocoder,
x, _ljspeech_processor, place)
i * 4 + j, else:
dataformats="HWC") print(
'vocoder error, we only support griffinlim, cbhg and waveflow, but recevied %s.'
writer.add_audio(text_input + '(cbhg)', wav, 0, cfg['audio']['sr']) % args.vocoder)
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
cfg['audio']['sr'])
if not os.path.exists(os.path.join(args.output, 'samples')): if not os.path.exists(os.path.join(args.output, 'samples')):
os.mkdir(os.path.join(args.output, 'samples')) os.mkdir(os.path.join(args.output, 'samples'))
write( write(
os.path.join(os.path.join(args.output, 'samples'), 'cbhg.wav'), os.path.join(
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
cfg['audio']['sr'], wav) cfg['audio']['sr'], wav)
print("Synthesis completed !!!")
writer.close()
def synthesis_with_griffinlim(mel_output, _ljspeech_processor):
# synthesis with griffin-lim # synthesis with griffin-lim
wav = _ljspeech_processor.inv_melspectrogram( mel_output = fluid.layers.transpose(
fluid.layers.transpose( fluid.layers.squeeze(mel_output, [0]), [1, 0])
fluid.layers.squeeze(postnet_pred, [0]), [1, 0]).numpy()) mel_output = np.exp(mel_output.numpy())
writer.add_audio(text_input + '(griffin)', wav, 0, cfg['audio']['sr']) basis = librosa.filters.mel(22050, 1024, 80, fmin=0, fmax=8000)
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
write( wav = librosa.core.griffinlim(spec**1.2, hop_length=256, win_length=1024)
os.path.join(os.path.join(args.output, 'samples'), 'griffin.wav'),
cfg['audio']['sr'], wav) return wav
print("Synthesis completed !!!")
writer.close()
def synthesis_with_wavenet(mel_output, args):
with open(args.config_vocoder, 'rt') as f:
config = yaml.safe_load(f)
n_mels = config["data"]["n_mels"]
model_config = config["model"]
filter_size = model_config["filter_size"]
upsampling_factors = model_config["upsampling_factors"]
encoder = UpsampleNet(upsampling_factors)
n_loop = model_config["n_loop"]
n_layer = model_config["n_layer"]
residual_channels = model_config["residual_channels"]
output_dim = model_config["output_dim"]
loss_type = model_config["loss_type"]
log_scale_min = model_config["log_scale_min"]
decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels,
filter_size, loss_type, log_scale_min)
model = ConditionalWavenet(encoder, decoder)
# load model parameters
iteration = io.load_parameters(
model, checkpoint_path=args.checkpoint_vocoder)
for layer in model.sublayers():
if isinstance(layer, WeightNormWrapper):
layer.remove_weight_norm()
mel_output = fluid.layers.transpose(mel_output, [0, 2, 1])
wav = model.synthesis(mel_output)
return wav.numpy()[0]
def synthesis_with_cbhg(mel_output, _ljspeech_processor, cfg):
with fluid.unique_name.guard():
model_vocoder = Vocoder(
cfg['train']['batch_size'], cfg['vocoder']['hidden_size'],
cfg['audio']['num_mels'], cfg['audio']['n_fft'])
# Load parameters.
global_step = io.load_parameters(
model=model_vocoder, checkpoint_path=args.checkpoint_vocoder)
model_vocoder.eval()
mag_pred = model_vocoder(mel_output)
# synthesis with cbhg
wav = _ljspeech_processor.inv_spectrogram(
fluid.layers.transpose(fluid.layers.squeeze(mag_pred, [0]), [1, 0])
.numpy())
return wav
def synthesis_with_waveflow(mel_output, args, checkpoint, _ljspeech_processor,
place):
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = mel_output.numpy()
#mel_output = (mel_output - mel_output.min())/(mel_output.max() - mel_output.min())
#mel_output = 5 * mel_output - 4
#mel_output = np.log(10) * mel_output
fluid.enable_dygraph(place)
args.config = args.config_vocoder
args.use_fp16 = False
config = io.add_yaml_config_to_args(args)
mel_spectrogram = dg.to_variable(mel_output)
mel_spectrogram = fluid.layers.unsqueeze(mel_spectrogram, [0])
# Build model.
waveflow = WaveFlowModule(config)
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
for layer in waveflow.sublayers():
if isinstance(layer, weight_norm.WeightNormWrapper):
layer.remove_weight_norm()
# Run model inference.
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
return wav.numpy()[0]
if __name__ == '__main__': if __name__ == '__main__':
...@@ -169,5 +267,6 @@ if __name__ == '__main__': ...@@ -169,5 +267,6 @@ if __name__ == '__main__':
args = parser.parse_args() args = parser.parse_args()
# Print the whole config setting. # Print the whole config setting.
pprint(vars(args)) pprint(vars(args))
synthesis("Parakeet stands for Paddle PARAllel text-to-speech toolkit.", synthesis(
args) "Life was like a box of chocolates, you never know what you're gonna get.",
args)
...@@ -2,12 +2,20 @@ ...@@ -2,12 +2,20 @@
# train model # train model
CUDA_VISIBLE_DEVICES=0 \ CUDA_VISIBLE_DEVICES=0 \
python -u synthesis.py \ python -u synthesis.py \
--max_len=300 \ --max_len=400 \
--use_gpu=1 \ --use_gpu=0 \
--output='./synthesis' \ --output='./synthesis' \
--config='configs/ljspeech.yaml' \ --config='configs/ljspeech.yaml' \
--checkpoint_transformer='./checkpoint/transformer/step-120000' \ --checkpoint_transformer='./checkpoint/transformer/step-120000' \
--checkpoint_vocoder='./checkpoint/vocoder/step-100000' \ --vocoder='wavenet' \
--config_vocoder='../wavenet/config.yaml' \
--checkpoint_vocoder='../wavenet/step-2450000' \
#--vocoder='waveflow' \
#--config_vocoder='../waveflow/checkpoint/waveflow_res64_ljspeech_ckpt_1.0/waveflow_ljspeech.yaml' \
#--checkpoint_vocoder='../waveflow/checkpoint/waveflow_res64_ljspeech_ckpt_1.0/step-3020000' \
#--vocoder='cbhg' \
#--config_vocoder='configs/ljspeech.yaml' \
#--checkpoint_vocoder='checkpoint/cbhg/step-100000' \
if [ $? -ne 0 ]; then if [ $? -ne 0 ]; then
echo "Failed in training!" echo "Failed in training!"
......
...@@ -98,7 +98,7 @@ def main(args): ...@@ -98,7 +98,7 @@ def main(args):
local_rank, local_rank,
is_vocoder=True).reader() is_vocoder=True).reader()
for epoch in range(cfg['train']['max_epochs']): for epoch in range(cfg['train']['max_iteration']):
pbar = tqdm(reader) pbar = tqdm(reader)
for i, data in enumerate(pbar): for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d' % epoch) pbar.set_description('Processing at epoch %d' % epoch)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册