decoder.py 8.0 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14
import math
L
lifuchen 已提交
15 16
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
17
from parakeet.models.transformer_tts.utils import *
L
lifuchen 已提交
18
from parakeet.modules.multihead_attention import MultiheadAttention
L
lifuchen 已提交
19
from parakeet.modules.ffn import PositionwiseFeedForward
L
lifuchen 已提交
20 21
from parakeet.models.transformer_tts.prenet import PreNet
from parakeet.models.transformer_tts.post_convnet import PostConvNet
L
lifuchen 已提交
22

L
lifuchen 已提交
23

L
lifuchen 已提交
24
class Decoder(dg.Layer):
25
    def __init__(self, num_hidden, config, num_head=4, n_layers=3):
L
lifuchen 已提交
26 27
        super(Decoder, self).__init__()
        self.num_hidden = num_hidden
28
        self.num_head = num_head
L
lifuchen 已提交
29
        param = fluid.ParamAttr()
L
lifuchen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        self.alpha = self.create_parameter(
            shape=(1, ),
            attr=param,
            dtype='float32',
            default_initializer=fluid.initializer.ConstantInitializer(
                value=1.0))
        self.pos_inp = get_sinusoid_encoding_table(
            1024, self.num_hidden, padding_idx=0)
        self.pos_emb = dg.Embedding(
            size=[1024, num_hidden],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    self.pos_inp),
                trainable=False))
        self.decoder_prenet = PreNet(
            input_size=config['audio']['num_mels'],
            hidden_size=num_hidden * 2,
            output_size=num_hidden,
            dropout_rate=0.2)
L
lifuchen 已提交
50
        k = math.sqrt(1 / num_hidden)
L
lifuchen 已提交
51 52 53 54 55 56 57
        self.linear = dg.Linear(
            num_hidden,
            num_hidden,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.XavierInitializer()),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-k, high=k)))
L
lifuchen 已提交
58

L
lifuchen 已提交
59 60
        self.selfattn_layers = [
            MultiheadAttention(num_hidden, num_hidden // num_head,
61
                               num_hidden // num_head) for _ in range(n_layers)
L
lifuchen 已提交
62
        ]
L
lifuchen 已提交
63 64
        for i, layer in enumerate(self.selfattn_layers):
            self.add_sublayer("self_attn_{}".format(i), layer)
L
lifuchen 已提交
65 66
        self.attn_layers = [
            MultiheadAttention(num_hidden, num_hidden // num_head,
67
                               num_hidden // num_head) for _ in range(n_layers)
L
lifuchen 已提交
68
        ]
L
lifuchen 已提交
69 70
        for i, layer in enumerate(self.attn_layers):
            self.add_sublayer("attn_{}".format(i), layer)
L
lifuchen 已提交
71 72 73
        self.ffns = [
            PositionwiseFeedForward(
                num_hidden, num_hidden * num_head, filter_size=1)
74
            for _ in range(n_layers)
L
lifuchen 已提交
75
        ]
L
lifuchen 已提交
76 77
        for i, layer in enumerate(self.ffns):
            self.add_sublayer("ffns_{}".format(i), layer)
L
lifuchen 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
        self.mel_linear = dg.Linear(
            num_hidden,
            config['audio']['num_mels'] * config['audio']['outputs_per_step'],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.XavierInitializer()),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-k, high=k)))
        self.stop_linear = dg.Linear(
            num_hidden,
            1,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.XavierInitializer()),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-k, high=k)))
L
lifuchen 已提交
92

L
lifuchen 已提交
93 94 95 96 97 98 99 100
        self.postconvnet = PostConvNet(
            config['audio']['num_mels'],
            config['hidden_size'],
            filter_size=5,
            padding=4,
            num_conv=5,
            outputs_per_step=config['audio']['outputs_per_step'],
            use_cudnn=True)
L
lifuchen 已提交
101

102 103 104 105 106 107 108 109 110
    def forward(self,
                key,
                value,
                query,
                positional,
                mask,
                m_mask=None,
                m_self_mask=None,
                zero_mask=None):
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        """
        Decoder layer of TransformerTTS.
        Args:
            key (Variable): The input key of decoder.
                Shape: (B, T_text, C), T_text means the timesteps of input text,
                dtype: float32. 
            value (Variable): The . input value of decoder.
                Shape: (B, T_text, C), dtype: float32.
            query (Variable): The input query of decoder.
                Shape: (B, T_mel, C), T_mel means the timesteps of input spectrum,
                dtype: float32.
            positional (Variable): The spectrum position. 
                Shape: (B, T_mel), dtype: int64.
            mask (Variable): the mask of decoder self attention.
                Shape: (B, T_mel, T_mel), dtype: int64.
            m_mask (Variable, optional): the query mask of encoder-decoder attention. Defaults to None.
                Shape: (B, T_mel, 1), dtype: int64.
            m_self_mask (Variable, optional): the query mask of decoder self attention. Defaults to None.
                Shape: (B, T_mel, 1), dtype: int64.
            zero_mask (Variable, optional): query mask of encoder-decoder attention. Defaults to None.
                Shape: (B, T_mel, T_text), dtype: int64.
                
        Returns:
            mel_out (Variable): the decoder output after mel linear projection.
                Shape: (B, T_mel, C).
            out (Variable): the decoder output after post mel network.
                Shape: (B, T_mel, C).
            stop_tokens (Variable): the stop tokens of output.
                Shape: (B, T_mel, 1)
            attn_list (list[Variable]): the encoder-decoder attention list.
                Len: n_layers.
            selfattn_list (list[Variable]): the decoder self attention list.
                Len: n_layers.
        """
L
lifuchen 已提交
145 146

        # get decoder mask with triangular matrix
L
lifuchen 已提交
147

L
lifuchen 已提交
148
        if fluid.framework._dygraph_tracer()._train_mode:
149
            m_mask = layers.expand(m_mask, [self.num_head, 1, key.shape[1]])
150 151
            m_self_mask = layers.expand(m_self_mask,
                                        [self.num_head, 1, query.shape[1]])
152 153 154
            mask = layers.expand(mask, [self.num_head, 1, 1])
            zero_mask = layers.expand(zero_mask, [self.num_head, 1, 1])

L
lifuchen 已提交
155
        else:
156
            m_mask, m_self_mask, zero_mask = None, None, None
L
lifuchen 已提交
157

158
        # Decoder pre-network
L
lifuchen 已提交
159
        query = self.decoder_prenet(query)
L
lifuchen 已提交
160

L
lifuchen 已提交
161 162 163 164 165 166 167 168
        # Centered position
        query = self.linear(query)

        # Get position embedding
        positional = self.pos_emb(positional)
        query = positional * self.alpha + query

        #positional dropout
169 170
        query = fluid.layers.dropout(
            query, 0.1, dropout_implementation='upscale_in_train')
L
lifuchen 已提交
171 172 173 174

        # Attention decoder-decoder, encoder-decoder
        selfattn_list = list()
        attn_list = list()
L
lifuchen 已提交
175 176 177 178

        for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers,
                                       self.ffns):
            query, attn_dec = selfattn(
179
                query, query, query, mask=mask, query_mask=m_self_mask)
L
lifuchen 已提交
180 181
            query, attn_dot = attn(
                key, value, query, mask=zero_mask, query_mask=m_mask)
L
lifuchen 已提交
182 183 184
            query = ffn(query)
            selfattn_list.append(attn_dec)
            attn_list.append(attn_dot)
185

L
lifuchen 已提交
186 187 188 189 190
        # Mel linear projection
        mel_out = self.mel_linear(query)
        # Post Mel Network
        out = self.postconvnet(mel_out)
        out = mel_out + out
L
lifuchen 已提交
191

L
lifuchen 已提交
192 193 194 195 196 197
        # Stop tokens
        stop_tokens = self.stop_linear(query)
        stop_tokens = layers.squeeze(stop_tokens, [-1])
        stop_tokens = layers.sigmoid(stop_tokens)

        return mel_out, out, attn_list, stop_tokens, selfattn_list