jlspeech.py 5.8 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
from pathlib import Path
import numpy as np
import pandas as pd
import librosa

from paddle import fluid
from parakeet import g2p
from parakeet import audio
from parakeet.data.sampler import *
from parakeet.data.datacargo import DataCargo
from parakeet.data.dataset import Dataset
from parakeet.data.batch import TextIDBatcher, SpecBatcher

class LJSpeechLoader:
15
    def __init__(self, config, nranks, rank, is_vocoder=False, shuffle=True):
L
lifuchen 已提交
16 17 18 19
        place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()

        LJSPEECH_ROOT = Path(config.data_path)
        dataset = LJSpeech(LJSPEECH_ROOT, config)
20
        sampler = DistributedSampler(len(dataset), nranks, rank, shuffle=shuffle)
L
lifuchen 已提交
21 22 23 24

        assert config.batch_size % nranks == 0
        each_bs = config.batch_size // nranks
        if is_vocoder:
25
            dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=shuffle, collate_fn=batch_examples_vocoder, drop_last=True)
L
lifuchen 已提交
26
        else:
27
            dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=shuffle, collate_fn=batch_examples, drop_last=True)
L
lifuchen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
        
        self.reader = fluid.io.DataLoader.from_generator(
            capacity=32,
            iterable=True,
            use_double_buffer=True,
            return_list=True)
        self.reader.set_batch_generator(dataloader, place)


class LJSpeech(Dataset):
    def __init__(self, root, config):
        super(LJSpeech, self).__init__()
        assert isinstance(root, (str, Path)), "root should be a string or Path object"
        self.root = root if isinstance(root, Path) else Path(root)
        self.metadata = self._prepare_metadata()
        self.config = config
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        self._ljspeech_processor = audio.AudioProcessor(
            sample_rate=config.audio.sr, 
            num_mels=config.audio.num_mels, 
            min_level_db=config.audio.min_level_db, 
            ref_level_db=config.audio.ref_level_db, 
            n_fft=config.audio.n_fft, 
            win_length= config.audio.win_length, 
            hop_length= config.audio.hop_length,
            power=config.audio.power,
            preemphasis=config.audio.preemphasis,
            signal_norm=True,
            symmetric_norm=False,
            max_norm=1.,
            mel_fmin=0,
            mel_fmax=None,
            clip_norm=True,
            griffin_lim_iters=60,
            do_trim_silence=False,
            sound_norm=False)
L
lifuchen 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        
    def _prepare_metadata(self):
        csv_path = self.root.joinpath("metadata.csv")
        metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3,
                               names=["fname", "raw_text", "normalized_text"])
        return metadata
            
    def _get_example(self, metadatum):
        """All the code for generating an Example from a metadatum. If you want a 
        different preprocessing pipeline, you can override this method. 
        This method may require several processor, each of which has a lot of options.
        In this case, you'd better pass a composed transform and pass it to the init
        method.
        """
        
        fname, raw_text, normalized_text = metadatum
        wav_path = self.root.joinpath("wavs", fname + ".wav")
        
        # load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize
82 83 84
        wav = self._ljspeech_processor.load_wav(str(wav_path))
        mag = self._ljspeech_processor.spectrogram(wav).astype(np.float32)
        mel = self._ljspeech_processor.melspectrogram(wav).astype(np.float32)
L
lifuchen 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
        return (mag, mel, phonemes) # maybe we need to implement it as a map in the future

    def __getitem__(self, index):
        metadatum = self.metadata.iloc[index]
        example = self._get_example(metadatum)
        return example
    
    def __iter__(self):
        for i in range(len(self)):
            yield self[i]
    
    def __len__(self):
        return len(self.metadata)


def batch_examples(batch):
    texts = []
    mels = []
    mel_inputs = []
    text_lens = []
    pos_texts = []
    pos_mels = []
    for data in batch:
        _, mel, text = data
        mel_inputs.append(np.concatenate([np.zeros([mel.shape[0], 1], np.float32), mel[:,:-1]], axis=-1))
        text_lens.append(len(text))
        pos_texts.append(np.arange(1, len(text) + 1))
        pos_mels.append(np.arange(1, mel.shape[1] + 1))
        mels.append(mel)
        texts.append(text)
    
    # Sort by text_len in descending order
    texts = [i for i,_ in sorted(zip(texts, text_lens), key=lambda x: x[1], reverse=True)]
    mels = [i for i,_ in sorted(zip(mels, text_lens), key=lambda x: x[1], reverse=True)]
    mel_inputs = [i for i,_ in sorted(zip(mel_inputs, text_lens), key=lambda x: x[1], reverse=True)]
    pos_texts = [i for i,_ in sorted(zip(pos_texts, text_lens), key=lambda x: x[1], reverse=True)]
    pos_mels = [i for i,_ in sorted(zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)]
    text_lens = sorted(text_lens, reverse=True)

    # Pad sequence with largest len of the batch
126 127 128 129 130
    texts = TextIDBatcher(pad_id=0)(texts)   #(B, T)
    pos_texts = TextIDBatcher(pad_id=0)(pos_texts) #(B,T)
    pos_mels = TextIDBatcher(pad_id=0)(pos_mels) #(B,T)
    mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1)) #(B,T,num_mels)
    mel_inputs = np.transpose(SpecBatcher(pad_value=0.)(mel_inputs), axes=(0,2,1))#(B,T,num_mels)
L
lifuchen 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens))

def batch_examples_vocoder(batch):
    mels=[]
    mags=[]
    for data in batch:
        mag, mel, _ = data
        mels.append(mel)
        mags.append(mag)

    mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
    mags = np.transpose(SpecBatcher(pad_value=0.)(mags), axes=(0,2,1))

    return (mels, mags)