fastspeech.py 6.7 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14
import math
15
import numpy as np
L
lifuchen 已提交
16 17 18
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols
19
from parakeet.models.transformer_tts.utils import *
L
lifuchen 已提交
20
from parakeet.models.transformer_tts.post_convnet import PostConvNet
L
lifuchen 已提交
21
from parakeet.models.fastspeech.length_regulator import LengthRegulator
L
lifuchen 已提交
22 23
from parakeet.models.fastspeech.encoder import Encoder
from parakeet.models.fastspeech.decoder import Decoder
L
lifuchen 已提交
24

L
lifuchen 已提交
25

L
lifuchen 已提交
26 27 28 29 30
class FastSpeech(dg.Layer):
    def __init__(self, cfg):
        " FastSpeech"
        super(FastSpeech, self).__init__()

L
lifuchen 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        self.encoder = Encoder(
            n_src_vocab=len(symbols) + 1,
            len_max_seq=cfg['max_seq_len'],
            n_layers=cfg['encoder_n_layer'],
            n_head=cfg['encoder_head'],
            d_k=cfg['fs_hidden_size'] // cfg['encoder_head'],
            d_v=cfg['fs_hidden_size'] // cfg['encoder_head'],
            d_model=cfg['fs_hidden_size'],
            d_inner=cfg['encoder_conv1d_filter_size'],
            fft_conv1d_kernel=cfg['fft_conv1d_filter'],
            fft_conv1d_padding=cfg['fft_conv1d_padding'],
            dropout=0.1)
        self.length_regulator = LengthRegulator(
            input_size=cfg['fs_hidden_size'],
            out_channels=cfg['duration_predictor_output_size'],
            filter_size=cfg['duration_predictor_filter_size'],
            dropout=cfg['dropout'])
        self.decoder = Decoder(
            len_max_seq=cfg['max_seq_len'],
            n_layers=cfg['decoder_n_layer'],
            n_head=cfg['decoder_head'],
            d_k=cfg['fs_hidden_size'] // cfg['decoder_head'],
            d_v=cfg['fs_hidden_size'] // cfg['decoder_head'],
            d_model=cfg['fs_hidden_size'],
            d_inner=cfg['decoder_conv1d_filter_size'],
            fft_conv1d_kernel=cfg['fft_conv1d_filter'],
            fft_conv1d_padding=cfg['fft_conv1d_padding'],
            dropout=0.1)
        self.weight = fluid.ParamAttr(
            initializer=fluid.initializer.XavierInitializer())
L
lifuchen 已提交
61
        k = math.sqrt(1 / cfg['fs_hidden_size'])
L
lifuchen 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        self.bias = fluid.ParamAttr(initializer=fluid.initializer.Uniform(
            low=-k, high=k))
        self.mel_linear = dg.Linear(
            cfg['fs_hidden_size'],
            cfg['audio']['num_mels'] * cfg['audio']['outputs_per_step'],
            param_attr=self.weight,
            bias_attr=self.bias, )
        self.postnet = PostConvNet(
            n_mels=cfg['audio']['num_mels'],
            num_hidden=512,
            filter_size=5,
            padding=int(5 / 2),
            num_conv=5,
            outputs_per_step=cfg['audio']['outputs_per_step'],
            use_cudnn=True,
            dropout=0.1,
            batchnorm_last=True)
L
lifuchen 已提交
79

L
lifuchen 已提交
80 81 82
    def forward(self,
                character,
                text_pos,
83 84 85 86
                enc_non_pad_mask,
                dec_non_pad_mask,
                enc_slf_attn_mask=None,
                dec_slf_attn_mask=None,
L
lifuchen 已提交
87 88 89
                mel_pos=None,
                length_target=None,
                alpha=1.0):
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        """
        FastSpeech model.
        
        Args:
            character (Variable): Shape(B, T_text), dtype: float32. The input text
                characters. T_text means the timesteps of input characters.
            text_pos (Variable): Shape(B, T_text), dtype: int64. The input text
                position. T_text means the timesteps of input characters.
            mel_pos (Variable, optional): Shape(B, T_mel),
                dtype: int64. The spectrum position. T_mel means the timesteps of input spectrum.
            length_target (Variable, optional): Shape(B, T_text),
                dtype: int64. The duration of phoneme compute from pretrained transformerTTS.
            alpha (Constant): 
                dtype: float32. The hyperparameter to determine the length of the expanded sequence 
                mel, thereby controlling the voice speed.

        Returns:
            mel_output (Variable), Shape(B, mel_T, C), the mel output before postnet.
            mel_output_postnet (Variable), Shape(B, mel_T, C), the mel output after postnet.
            duration_predictor_output (Variable), Shape(B, text_T), the duration of phoneme compute 
            with duration predictor.
            enc_slf_attn_list (Variable), Shape(B, text_T, text_T), the encoder self attention list.
            dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
        """

115 116 117 118 119
        encoder_output, enc_slf_attn_list = self.encoder(
            character,
            text_pos,
            enc_non_pad_mask,
            slf_attn_mask=enc_slf_attn_mask)
L
lifuchen 已提交
120
        if fluid.framework._dygraph_tracer()._train_mode:
L
lifuchen 已提交
121 122 123 124

            length_regulator_output, duration_predictor_output = self.length_regulator(
                encoder_output, target=length_target, alpha=alpha)
            decoder_output, dec_slf_attn_list = self.decoder(
125 126 127 128
                length_regulator_output,
                mel_pos,
                dec_non_pad_mask,
                slf_attn_mask=dec_slf_attn_mask)
L
lifuchen 已提交
129 130 131 132 133 134

            mel_output = self.mel_linear(decoder_output)
            mel_output_postnet = self.postnet(mel_output) + mel_output

            return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list
        else:
L
lifuchen 已提交
135 136
            length_regulator_output, decoder_pos = self.length_regulator(
                encoder_output, alpha=alpha)
137 138 139 140
            slf_attn_mask = get_triu_tensor(
                decoder_pos.numpy(), decoder_pos.numpy()).astype(np.float32)
            slf_attn_mask = fluid.layers.cast(
                dg.to_variable(slf_attn_mask == 0), np.float32)
141
            slf_attn_mask = dg.to_variable(slf_attn_mask)
142 143 144 145 146 147 148
            dec_non_pad_mask = fluid.layers.unsqueeze(
                (decoder_pos != 0).astype(np.float32), [-1])
            decoder_output, _ = self.decoder(
                length_regulator_output,
                decoder_pos,
                dec_non_pad_mask,
                slf_attn_mask=slf_attn_mask)
L
lifuchen 已提交
149 150 151
            mel_output = self.mel_linear(decoder_output)
            mel_output_postnet = self.postnet(mel_output) + mel_output

L
lifuchen 已提交
152
            return mel_output, mel_output_postnet