attention.py 5.5 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chenfeiyu 已提交
15 16 17 18 19
import numpy as np
from collections import namedtuple
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as F
20
import paddle.fluid.initializer as I
C
chenfeiyu 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33

from parakeet.modules.weight_norm import Linear
WindowRange = namedtuple("WindowRange", ["backward", "ahead"])


class Attention(dg.Layer):
    def __init__(self,
                 query_dim,
                 embed_dim,
                 dropout=0.0,
                 window_range=WindowRange(-1, 3),
                 key_projection=True,
                 value_projection=True):
34 35 36 37 38 39 40 41 42 43
        """Attention Layer for Deep Voice 3.

        Args:
            query_dim (int): the dimension of query vectors. (The size of a single vector of query.)
            embed_dim (int): the dimension of keys and values.
            dropout (float, optional): dropout probability of attention. Defaults to 0.0.
            window_range (WindowRange, optional): range of attention, this is only used at inference. Defaults to WindowRange(-1, 3).
            key_projection (bool, optional): whether the `Attention` Layer has a Linear Layer for the keys to pass through before computing attention. Defaults to True.
            value_projection (bool, optional): whether the `Attention` Layer has a Linear Layer for the values to pass through before computing attention. Defaults to True.
        """
C
chenfeiyu 已提交
44
        super(Attention, self).__init__()
45
        std = np.sqrt(1 / query_dim)
L
lifuchen 已提交
46 47
        self.query_proj = Linear(
            query_dim, embed_dim, param_attr=I.Normal(scale=std))
C
chenfeiyu 已提交
48
        if key_projection:
49
            std = np.sqrt(1 / embed_dim)
L
lifuchen 已提交
50 51
            self.key_proj = Linear(
                embed_dim, embed_dim, param_attr=I.Normal(scale=std))
C
chenfeiyu 已提交
52
        if value_projection:
53
            std = np.sqrt(1 / embed_dim)
L
lifuchen 已提交
54 55
            self.value_proj = Linear(
                embed_dim, embed_dim, param_attr=I.Normal(scale=std))
56
        std = np.sqrt(1 / embed_dim)
L
lifuchen 已提交
57 58
        self.out_proj = Linear(
            embed_dim, query_dim, param_attr=I.Normal(scale=std))
C
chenfeiyu 已提交
59 60 61 62 63 64 65 66

        self.key_projection = key_projection
        self.value_projection = value_projection
        self.dropout = dropout
        self.window_range = window_range

    def forward(self, query, encoder_out, mask=None, last_attended=None):
        """
67
        Compute contextualized representation and alignment scores.
C
chenfeiyu 已提交
68 69
        
        Args:
C
chenfeiyu 已提交
70
            query (Variable): shape(B, T_dec, C_q), dtype float32, the query tensor, where C_q means the query dim.
71
            encoder_out (keys, values): 
C
chenfeiyu 已提交
72 73 74
                keys (Variable): shape(B, T_enc, C_emb), dtype float32, the key representation from an encoder, where C_emb means embed dim.
                values (Variable): shape(B, T_enc, C_emb), dtype float32, the value representation from an encoder, where C_emb means embed dim.
            mask (Variable, optional): shape(B, T_enc), dtype float32, mask generated with valid text lengths. Pad tokens corresponds to 1, and valid tokens correspond to 0.
75
            last_attended (int, optional): The position that received the most attention at last time step. This is only used at inference.
C
chenfeiyu 已提交
76 77

        Outpus:
C
chenfeiyu 已提交
78 79
            x (Variable): shape(B, T_dec, C_q), dtype float32, the contextualized representation from attention mechanism.
            attn_scores (Variable): shape(B, T_dec, T_enc), dtype float32, the alignment tensor, where T_dec means the number of decoder time steps and T_enc means number the number of decoder time steps.
C
chenfeiyu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        """
        keys, values = encoder_out
        residual = query
        if self.value_projection:
            values = self.value_proj(values)
        if self.key_projection:
            keys = self.key_proj(keys)
        x = self.query_proj(query)

        x = F.matmul(x, keys, transpose_y=True)

        # mask generated by sentence length
        neg_inf = -1.e30
        if mask is not None:
            neg_inf_mask = F.scale(F.unsqueeze(mask, [1]), neg_inf)
            x += neg_inf_mask

        # if last_attended is provided, focus only on a window range around it
        # to enforce monotonic attention.
        if last_attended is not None:
            locality_mask = np.ones(shape=x.shape, dtype=np.float32)
            backward, ahead = self.window_range
            backward = last_attended + backward
            ahead = last_attended + ahead
            backward = max(backward, 0)
            ahead = min(ahead, x.shape[-1])
            locality_mask[:, :, backward:ahead] = 0.
            locality_mask = dg.to_variable(locality_mask)
            neg_inf_mask = F.scale(locality_mask, neg_inf)
            x += neg_inf_mask

        x = F.softmax(x)
        attn_scores = x
L
lifuchen 已提交
113 114
        x = F.dropout(
            x, self.dropout, dropout_implementation="upscale_in_train")
C
chenfeiyu 已提交
115 116
        x = F.matmul(x, values)
        encoder_length = keys.shape[1]
117

C
chenfeiyu 已提交
118 119 120 121
        x = F.scale(x, encoder_length * np.sqrt(1.0 / encoder_length))
        x = self.out_proj(x)
        x = F.scale((x + residual), np.sqrt(0.5))
        return x, attn_scores