network.py 9.8 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
from utils import *
from modules import *
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols
from parakeet.modules.utils import *
from parakeet.modules.post_convnet import PostConvNet

class Encoder(dg.Layer):
    def __init__(self,
                 n_src_vocab,
                 len_max_seq,
                 d_word_vec,
                 n_layers,
                 n_head,
                 d_k,
                 d_v,
                 d_model,
                 d_inner,
                 fft_conv1d_kernel,
                 fft_conv1d_padding,
                 dropout=0.1):
        super(Encoder, self).__init__()
        n_position = len_max_seq + 1

        self.src_word_emb = dg.Embedding(size=[n_src_vocab, d_word_vec], padding_idx=0)
        self.pos_inp = get_sinusoid_encoding_table(n_position, d_word_vec, padding_idx=0)
        self.position_enc = dg.Embedding(size=[n_position, d_word_vec],
                                 padding_idx=0,
                                 param_attr=fluid.ParamAttr(
                                     initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
                                     trainable=False))
        self.layer_stack = [FFTBlock(d_model, d_inner, n_head, d_k, d_v, fft_conv1d_kernel, fft_conv1d_padding, dropout=dropout) for _ in range(n_layers)]
        for i, layer in enumerate(self.layer_stack):
            self.add_sublayer('fft_{}'.format(i), layer)

    def forward(self, character, text_pos):
38 39 40 41 42 43 44 45 46 47 48 49 50 51
        """
        Encoder layer of FastSpeech.
        
        Args:
            character (Variable): Shape(B, T_text), dtype: float32. The input text
                characters. T_text means the timesteps of input characters.
            text_pos (Variable): Shape(B, T_text), dtype: int64. The input text
                position. T_text means the timesteps of input characters.

        Returns:
            enc_output (Variable), Shape(B, text_T, C), the encoder output.
            non_pad_mask (Variable), Shape(B, T_text, 1), the mask with non pad.
            enc_slf_attn_list (list<Variable>), Len(n_layers), Shape(B * n_head, text_T, text_T), the encoder self attention list.
        """
L
lifuchen 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        enc_slf_attn_list = []
        # -- prepare masks
        # shape character (N, T)
        slf_attn_mask = get_attn_key_pad_mask(seq_k=character, seq_q=character)
        non_pad_mask = get_non_pad_mask(character)

        # -- Forward
        enc_output = self.src_word_emb(character) + self.position_enc(text_pos) #(N, T, C)

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(
                enc_output,
                non_pad_mask=non_pad_mask,
                slf_attn_mask=slf_attn_mask)
            enc_slf_attn_list += [enc_slf_attn]
        
        return enc_output, non_pad_mask, enc_slf_attn_list

class Decoder(dg.Layer):
    def __init__(self,
                 len_max_seq,
                 d_word_vec,
                 n_layers,
                 n_head,
                 d_k,
                 d_v,
                 d_model,
                 d_inner,
                 fft_conv1d_kernel,
                 fft_conv1d_padding,
                 dropout=0.1):
        super(Decoder, self).__init__()

        n_position = len_max_seq + 1
        self.pos_inp = get_sinusoid_encoding_table(n_position, d_word_vec, padding_idx=0)
        self.position_enc = dg.Embedding(size=[n_position, d_word_vec],
                                 padding_idx=0,
                                 param_attr=fluid.ParamAttr(
                                     initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
                                     trainable=False))
        self.layer_stack = [FFTBlock(d_model, d_inner, n_head, d_k, d_v, fft_conv1d_kernel, fft_conv1d_padding, dropout=dropout) for _ in range(n_layers)] 
        for i, layer in enumerate(self.layer_stack):
            self.add_sublayer('fft_{}'.format(i), layer)
    
    def forward(self, enc_seq, enc_pos):
97 98 99 100 101 102 103 104 105 106 107 108
        """
        Decoder layer of FastSpeech.
        
        Args:
            enc_seq (Variable), Shape(B, text_T, C), dtype: float32. 
                The output of length regulator.
            enc_pos (Variable, optional): Shape(B, T_mel),
                dtype: int64. The spectrum position. T_mel means the timesteps of input spectrum.
        Returns:
            dec_output (Variable), Shape(B, mel_T, C), the decoder output.
            dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
        """
L
lifuchen 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        dec_slf_attn_list = []

        # -- Prepare masks
        slf_attn_mask = get_attn_key_pad_mask(seq_k=enc_pos, seq_q=enc_pos)
        non_pad_mask = get_non_pad_mask(enc_pos)

        # -- Forward
        dec_output = enc_seq + self.position_enc(enc_pos)

        for dec_layer in self.layer_stack:
            dec_output, dec_slf_attn = dec_layer(
                dec_output,
                non_pad_mask=non_pad_mask,
                slf_attn_mask=slf_attn_mask)
            dec_slf_attn_list += [dec_slf_attn]

        return dec_output, dec_slf_attn_list

class FastSpeech(dg.Layer):
    def __init__(self, cfg):
        " FastSpeech"
        super(FastSpeech, self).__init__()

        self.encoder = Encoder(n_src_vocab=len(symbols)+1,
                               len_max_seq=cfg.max_sep_len,
                               d_word_vec=cfg.embedding_size,
                               n_layers=cfg.encoder_n_layer,
                               n_head=cfg.encoder_head,
                               d_k=64,
                               d_v=64,
                               d_model=cfg.hidden_size,
                               d_inner=cfg.encoder_conv1d_filter_size,
                               fft_conv1d_kernel=cfg.fft_conv1d_filter, 
                               fft_conv1d_padding=cfg.fft_conv1d_padding,
                               dropout=0.1)
        self.length_regulator = LengthRegulator(input_size=cfg.hidden_size, 
                                                out_channels=cfg.duration_predictor_output_size, 
                                                filter_size=cfg.duration_predictor_filter_size, 
                                                dropout=cfg.dropout)
        self.decoder = Decoder(len_max_seq=cfg.max_sep_len,
                                d_word_vec=cfg.embedding_size,
                                n_layers=cfg.decoder_n_layer,
                                n_head=cfg.decoder_head,
                                d_k=64,
                                d_v=64,
                                d_model=cfg.hidden_size,
                                d_inner=cfg.decoder_conv1d_filter_size,
                                fft_conv1d_kernel=cfg.fft_conv1d_filter, 
                                fft_conv1d_padding=cfg.fft_conv1d_padding,
                                dropout=0.1)
        self.mel_linear = dg.Linear(cfg.decoder_output_size, cfg.audio.num_mels)
        self.postnet = PostConvNet(n_mels=80,
                 num_hidden=512,
                 filter_size=5,
                 padding=int(5 / 2),
                 num_conv=5,
                 outputs_per_step=1,
                 use_cudnn=True,
                 dropout=0.1)

    def forward(self, character, text_pos, mel_pos=None, length_target=None, alpha=1.0):
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        """
        FastSpeech model.
        
        Args:
            character (Variable): Shape(B, T_text), dtype: float32. The input text
                characters. T_text means the timesteps of input characters.
            text_pos (Variable): Shape(B, T_text), dtype: int64. The input text
                position. T_text means the timesteps of input characters.
            mel_pos (Variable, optional): Shape(B, T_mel),
                dtype: int64. The spectrum position. T_mel means the timesteps of input spectrum.
            length_target (Variable, optional): Shape(B, T_text),
                dtype: int64. The duration of phoneme compute from pretrained transformerTTS.
            alpha (Constant): 
                dtype: float32. The hyperparameter to determine the length of the expanded sequence 
                mel, thereby controlling the voice speed.

        Returns:
            mel_output (Variable), Shape(B, mel_T, C), the mel output before postnet.
            mel_output_postnet (Variable), Shape(B, mel_T, C), the mel output after postnet.
            duration_predictor_output (Variable), Shape(B, text_T), the duration of phoneme compute 
            with duration predictor.
            enc_slf_attn_list (Variable), Shape(B, text_T, text_T), the encoder self attention list.
            dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
        """

L
lifuchen 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        encoder_output, non_pad_mask, enc_slf_attn_list = self.encoder(character, text_pos)
        if fluid.framework._dygraph_tracer()._train_mode:
            
            length_regulator_output, duration_predictor_output = self.length_regulator(encoder_output,
                                                                                       target=length_target,
                                                                                       alpha=alpha)
            decoder_output, dec_slf_attn_list = self.decoder(length_regulator_output, mel_pos)

            mel_output = self.mel_linear(decoder_output)
            mel_output_postnet = self.postnet(mel_output) + mel_output

            return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list
        else:
            length_regulator_output, decoder_pos = self.length_regulator(encoder_output, alpha=alpha)
            decoder_output = self.decoder(length_regulator_output, decoder_pos)

            mel_output = self.mel_linear(decoder_output)
            mel_output_postnet = self.postnet(mel_output) + mel_output

            return mel_output, mel_output_postnet