utils.py 3.2 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14 15 16 17
import numpy as np
import librosa
import os, copy
from scipy import signal
L
lifuchen 已提交
18
import paddle.fluid.layers as layers
L
lifuchen 已提交
19 20 21


def get_positional_table(d_pos_vec, n_position=1024):
L
lifuchen 已提交
22 23 24
    position_enc = np.array(
        [[pos / np.power(10000, 2 * i / d_pos_vec) for i in range(d_pos_vec)]
         if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
L
lifuchen 已提交
25

L
lifuchen 已提交
26 27
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
L
lifuchen 已提交
28 29
    return position_enc

L
lifuchen 已提交
30

L
lifuchen 已提交
31 32 33 34 35 36 37 38 39
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    ''' Sinusoid position encoding table '''

    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

L
lifuchen 已提交
40 41
    sinusoid_table = np.array(
        [get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
L
lifuchen 已提交
42 43 44 45 46 47 48 49 50 51

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.

    return sinusoid_table

L
lifuchen 已提交
52

L
lifuchen 已提交
53
def get_non_pad_mask(seq):
L
lifuchen 已提交
54 55
    return layers.unsqueeze((seq != 0).astype(np.float32), [-1])

L
lifuchen 已提交
56 57 58 59 60 61 62

def get_attn_key_pad_mask(seq_k, seq_q):
    ''' For masking out the padding part of key sequence. '''

    # Expand to fit the shape of key query attention matrix.
    len_q = seq_q.shape[1]
    padding_mask = (seq_k != 0).astype(np.float32)
L
lifuchen 已提交
63 64
    padding_mask = layers.expand(
        layers.unsqueeze(padding_mask, [1]), [1, len_q, 1])
L
lifuchen 已提交
65 66
    return padding_mask

L
lifuchen 已提交
67

L
lifuchen 已提交
68 69 70 71 72 73
def get_triu_tensor(seq_k, seq_q):
    ''' For make a triu tensor '''
    len_k = seq_k.shape[1]
    len_q = seq_q.shape[1]
    batch_size = seq_k.shape[0]
    triu_tensor = np.triu(np.ones([len_k, len_q]), 1)
L
lifuchen 已提交
74 75 76 77
    triu_tensor = np.repeat(
        np.expand_dims(
            triu_tensor, axis=0), batch_size, axis=0)

L
lifuchen 已提交
78 79
    return triu_tensor

L
lifuchen 已提交
80

L
lifuchen 已提交
81 82 83 84 85
def guided_attention(N, T, g=0.2):
    '''Guided attention. Refer to page 3 on the paper.'''
    W = np.zeros((N, T), dtype=np.float32)
    for n_pos in range(W.shape[0]):
        for t_pos in range(W.shape[1]):
L
lifuchen 已提交
86 87
            W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(T) - n_pos / float(N))
                                         **2 / (2 * g * g))
L
lifuchen 已提交
88
    return W
L
lifuchen 已提交
89 90


L
lifuchen 已提交
91
def cross_entropy(input, label, position_weight=1.0, epsilon=1e-30):
L
lifuchen 已提交
92 93
    output = -1 * label * layers.log(input + epsilon) - (
        1 - label) * layers.log(1 - input + epsilon)
L
lifuchen 已提交
94 95 96
    output = output * (label * (position_weight - 1) + 1)

    return layers.reduce_sum(output, dim=[0, 1])