position_embedding.py 4.8 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chenfeiyu 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
import numpy as np
from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg


def compute_position_embedding(radians, speaker_position_rate):
    """compute sin/cos separately and scatter them to a zero.
    
    Arguments:
        radians {Variable} -- shape(n_vocab, embed_dim), the radians matrix.
        speaker_position_rate {Variable} -- shape(batch_size, ), speaker positioning rate.
    
    Returns:
        Variable -- shape(batch_size, n_vocab, embed_dim), the sin, cos matrix.
    """
    _, embed_dim = radians.shape
    batch_size = speaker_position_rate.shape[0]
    speaker_position_rate = F.unsqueeze(speaker_position_rate, [1, 2])
    scaled_radians = speaker_position_rate * radians

    odd_mask = (np.arange(embed_dim) % 2).astype(np.float32)
    odd_mask = dg.to_variable(odd_mask)

    out = odd_mask * F.cos(scaled_radians) \
        + (1 - odd_mask) * F.sin(scaled_radians)
    out = F.concat(
        [F.zeros((batch_size, 1, embed_dim), radians.dtype), out[:, 1:, :]],
        axis=1)
    return out


def position_encoding_init(n_position,
                           d_pos_vec,
                           position_rate=1.0,
                           padding_idx=None):
    """init the position encoding table"""
    # keep idx 0 for padding token position encoding zero vector
    # CAUTION: it is radians here, sin and cos are not applied
    # CAUTION: difference here
    indices_range = np.expand_dims(np.arange(n_position), -1)
    embed_range = 2 * (np.arange(d_pos_vec) // 2)
    radians = position_rate \
            * indices_range \
59
            / np.power(1.e4, embed_range / d_pos_vec)
C
chenfeiyu 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if padding_idx is not None:
        radians[padding_idx] = 0.
    return radians


class PositionEmbedding(dg.Layer):
    def __init__(self,
                 n_position,
                 d_pos_vec,
                 position_rate=1.0,
                 param_attr=None,
                 max_norm=None,
                 padding_idx=None):
        super(PositionEmbedding, self).__init__()
        self.weight = self.create_parameter((n_position, d_pos_vec))
        self.weight.set_value(
            position_encoding_init(n_position, d_pos_vec, position_rate,
                                   padding_idx).astype("float32"))

    def forward(self, indices, speaker_position_rate=None):
        """
        Args:
            indices (Variable): Shape (B, T), dtype: int64, position
                indices, where B means the batch size, T means the time steps.
            speaker_position_rate (Variable | float, optional), position
                rate. It can be a float point number or a Variable with 
                shape (1,), then this speaker_position_rate is used for every 
                example. It can also be a Variable with shape (B, 1), which 
                contains a speaker position rate for each speaker.
        Returns:
            out (Variable): Shape(B, T, C_pos), position embedding, where C_pos 
                means position embedding size.
        """
        batch_size, time_steps = indices.shape

        # convert speaker_position_rate to a Variable with shape(B, )
        if isinstance(speaker_position_rate, float):
            speaker_position_rate = dg.to_variable(
                np.array([speaker_position_rate]).astype("float32"))
            speaker_position_rate = F.expand(speaker_position_rate,
                                             [batch_size])
        elif isinstance(speaker_position_rate, fluid.framework.Variable) \
            and list(speaker_position_rate.shape) == [1]:
            speaker_position_rate = F.expand(speaker_position_rate,
                                             [batch_size])
        assert len(speaker_position_rate.shape) == 1 and \
            list(speaker_position_rate.shape) == [batch_size]

        weight = compute_position_embedding(self.weight,
                                            speaker_position_rate)  # (B, V, C)
        # make indices for gather_nd
        batch_id = F.expand(
L
lifuchen 已提交
112 113 114
            F.unsqueeze(
                F.range(
                    0, batch_size, 1, dtype="int64"), [1]), [1, time_steps])
C
chenfeiyu 已提交
115 116 117 118
        # (B, T, 2)
        gather_nd_id = F.stack([batch_id, indices], -1)

        out = F.gather_nd(weight, gather_nd_id)
L
lifuchen 已提交
119
        return out