train_transformer.py 8.2 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14 15 16
import os
from tqdm import tqdm
from tensorboardX import SummaryWriter
L
lifuchen 已提交
17
from collections import OrderedDict
L
lifuchen 已提交
18
import argparse
L
lifuchen 已提交
19
from pprint import pprint
L
lifuchen 已提交
20
from ruamel import yaml
L
lifuchen 已提交
21
from matplotlib import cm
L
lifuchen 已提交
22 23
import numpy as np
import paddle.fluid as fluid
L
lifuchen 已提交
24 25
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
26
from parakeet.models.transformer_tts.utils import cross_entropy
L
lifuchen 已提交
27
from data import LJSpeechLoader
28 29
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.utils import io
L
lifuchen 已提交
30

L
lifuchen 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
def add_config_options_to_parser(parser):
    parser.add_argument("--config", type=str, help="path of the config file")
    parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
    parser.add_argument("--data", type=str, help="path of LJspeech dataset")

    g = parser.add_mutually_exclusive_group()
    g.add_argument("--checkpoint", type=str, help="checkpoint to resume from")
    g.add_argument(
        "--iteration",
        type=int,
        help="the iteration of the checkpoint to load from output directory")

    parser.add_argument(
        "--output",
        type=str,
        default="experiment",
        help="path to save experiment results")
L
lifuchen 已提交
49

L
lifuchen 已提交
50

L
lifuchen 已提交
51
def main(args):
52 53 54
    local_rank = dg.parallel.Env().local_rank
    nranks = dg.parallel.Env().nranks
    parallel = nranks > 1
L
lifuchen 已提交
55

56
    with open(args.config) as f:
L
lifuchen 已提交
57
        cfg = yaml.load(f, Loader=yaml.Loader)
L
lifuchen 已提交
58 59

    global_step = 0
60
    place = fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace()
L
lifuchen 已提交
61

62 63
    if not os.path.exists(args.output):
        os.mkdir(args.output)
L
lifuchen 已提交
64

65 66
    writer = SummaryWriter(os.path.join(args.output,
                                        'log')) if local_rank == 0 else None
L
lifuchen 已提交
67

68 69 70 71 72 73 74 75 76 77 78
    fluid.enable_dygraph(place)
    network_cfg = cfg['network']
    model = TransformerTTS(
        network_cfg['embedding_size'], network_cfg['hidden_size'],
        network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
        cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
        network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])

    model.train()
    optimizer = fluid.optimizer.AdamOptimizer(
        learning_rate=dg.NoamDecay(1 / (cfg['train']['warm_up_step'] *
79
                                        (cfg['train']['learning_rate']**2)),
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                                   cfg['train']['warm_up_step']),
        parameter_list=model.parameters(),
        grad_clip=fluid.clip.GradientClipByGlobalNorm(cfg['train'][
            'grad_clip_thresh']))

    # Load parameters.
    global_step = io.load_parameters(
        model=model,
        optimizer=optimizer,
        checkpoint_dir=os.path.join(args.output, 'checkpoints'),
        iteration=args.iteration,
        checkpoint_path=args.checkpoint)
    print("Rank {}: checkpoint loaded.".format(local_rank))

    if parallel:
        strategy = dg.parallel.prepare_context()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

    reader = LJSpeechLoader(
        cfg['audio'],
        place,
        args.data,
        cfg['train']['batch_size'],
        nranks,
        local_rank,
        shuffle=True).reader()

    for epoch in range(cfg['train']['max_epochs']):
        pbar = tqdm(reader)
        for i, data in enumerate(pbar):
            pbar.set_description('Processing at epoch %d' % epoch)
            character, mel, mel_input, pos_text, pos_mel = data

            global_step += 1

            mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
                character, mel_input, pos_text, pos_mel)

            mel_loss = layers.mean(
                layers.abs(layers.elementwise_sub(mel_pred, mel)))
            post_mel_loss = layers.mean(
                layers.abs(layers.elementwise_sub(postnet_pred, mel)))
            loss = mel_loss + post_mel_loss

            # Note: When used stop token loss the learning did not work.
            if cfg['network']['stop_token']:
                label = (pos_mel == 0).astype(np.float32)
                stop_loss = cross_entropy(stop_preds, label)
                loss = loss + stop_loss

            if local_rank == 0:
                writer.add_scalars('training_loss', {
                    'mel_loss': mel_loss.numpy(),
                    'post_mel_loss': post_mel_loss.numpy()
                }, global_step)
L
lifuchen 已提交
135

136 137 138
                if cfg['network']['stop_token']:
                    writer.add_scalar('stop_loss',
                                      stop_loss.numpy(), global_step)
L
lifuchen 已提交
139

140
                if parallel:
141 142 143 144
                    writer.add_scalars('alphas', {
                        'encoder_alpha': model._layers.encoder.alpha.numpy(),
                        'decoder_alpha': model._layers.decoder.alpha.numpy(),
                    }, global_step)
L
lifuchen 已提交
145
                else:
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                    writer.add_scalars('alphas', {
                        'encoder_alpha': model.encoder.alpha.numpy(),
                        'decoder_alpha': model.decoder.alpha.numpy(),
                    }, global_step)

                writer.add_scalar('learning_rate',
                                  optimizer._learning_rate.step().numpy(),
                                  global_step)

                if global_step % cfg['train']['image_interval'] == 1:
                    for i, prob in enumerate(attn_probs):
                        for j in range(cfg['network']['decoder_num_head']):
                            x = np.uint8(
                                cm.viridis(prob.numpy()[j * cfg['train'][
                                    'batch_size'] // 2]) * 255)
                            writer.add_image(
                                'Attention_%d_0' % global_step,
                                x,
                                i * 4 + j,
                                dataformats="HWC")

                    for i, prob in enumerate(attn_enc):
                        for j in range(cfg['network']['encoder_num_head']):
                            x = np.uint8(
                                cm.viridis(prob.numpy()[j * cfg['train'][
                                    'batch_size'] // 2]) * 255)
                            writer.add_image(
                                'Attention_enc_%d_0' % global_step,
                                x,
                                i * 4 + j,
                                dataformats="HWC")

                    for i, prob in enumerate(attn_dec):
                        for j in range(cfg['network']['decoder_num_head']):
                            x = np.uint8(
                                cm.viridis(prob.numpy()[j * cfg['train'][
                                    'batch_size'] // 2]) * 255)
                            writer.add_image(
                                'Attention_dec_%d_0' % global_step,
                                x,
                                i * 4 + j,
                                dataformats="HWC")

            if parallel:
                loss = model.scale_loss(loss)
                loss.backward()
                model.apply_collective_grads()
            else:
                loss.backward()
            optimizer.minimize(loss)
            model.clear_gradients()

            # save checkpoint
            if local_rank == 0 and global_step % cfg['train'][
                    'checkpoint_interval'] == 0:
                io.save_parameters(
                    os.path.join(args.output, 'checkpoints'), global_step,
                    model, optimizer)

    if local_rank == 0:
        writer.close()
L
lifuchen 已提交
207

L
lifuchen 已提交
208 209

if __name__ == '__main__':
L
lifuchen 已提交
210
    parser = argparse.ArgumentParser(description="Train TransformerTTS model")
L
lifuchen 已提交
211
    add_config_options_to_parser(parser)
L
lifuchen 已提交
212 213
    args = parser.parse_args()
    # Print the whole config setting.
214
    pprint(vars(args))
215
    main(args)