dataset.py 5.6 KB
Newer Older
1 2 3 4 5 6 7
import six
import numpy as np


class DatasetMixin(object):
    """standard indexing interface for dataset."""

8
    def __getitem__(self, index):
9 10 11 12 13 14 15 16 17 18 19 20 21
        if isinstance(index, slice):
            start, stop, step = index.indices(len(self))
            return [
                self.get_example(i)
                for i in six.moves.range(start, stop, step)
            ]
        elif isinstance(index, (list, np.ndarray)):
            return [self.get_example(i) for i in index]
        else:
            # assumes it an integer
            return self.get_example(index)

    def get_example(self, i):
22
        raise NotImplementedError
23 24

    def __len__(self):
25 26
        raise NotImplementedError

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def __iter__(self):
        for i in range(len(self)):
            yield self.get_example(i)


class TransformDataset(DatasetMixin):
    """Transform a dataset to another with a transform."""

    def __init__(self, dataset, transform):
        self._dataset = dataset
        self._transform = transform

    def __len__(self):
        return len(self._dataset)

    def get_example(self, i):
        # CAUTION: only int is supported?
        # CAUTION: dataset support support __getitem__ and __len__
        in_data = self._dataset[i]
        return self._transform(in_data)


class TupleDataset(object):
    def __init__(self, *datasets):
        if not datasets:
            raise ValueError("no datasets are given")
        length = len(datasets[0])
        for i, dataset in enumerate(datasets):
            if len(datasets) != length:
                raise ValueError(
                    "all the datasets should have the same length."
                    "dataset {} has a different length".format(i))
        self._datasets = datasets
        self._length = length

    def __getitem__(self, index):
        # SOA
        batches = [dataset[index] for dataset in self._datasets]
        if isinstance(index, slice):
            length = len(batches[0])
            # AOS
            return [
                tuple([batch[i] for batch in batches])
                for i in six.moves.range(length)
            ]
        else:
            return tuple(batches)

    def __len__(self):
        return self._length


class DictDataset(object):
    def __init__(self, **datasets):
        if not datasets:
            raise ValueError("no datasets are given")
        length = None
        for key, dataset in six.iteritems(datasets):
            if length is None:
                length = len(dataset)
            elif len(datasets) != length:
                raise ValueError(
                    "all the datasets should have the same length."
                    "dataset {} has a different length".format(key))
        self._datasets = datasets
        self._length = length

    def __getitem__(self, index):
        batches = {
            key: dataset[index]
            for key, dataset in six.iteritems(self._datasets)
        }
        if isinstance(index, slice):
            length = len(six.next(six.itervalues(batches)))
            return [{key: batch[i]
                     for key, batch in six.iteritems(batches)}
                    for i in six.moves.range(length)]
        else:
            return batches


class SliceDataset(DatasetMixin):
    def __init__(self, dataset, start, finish, order=None):
        if start < 0 or finish > len(dataset):
            raise ValueError("subset overruns the dataset.")
        self._dataset = dataset
        self._start = start
        self._finish = finish
        self._size = finish - start

        if order is not None and len(order) != len(dataset):
            raise ValueError(
                "order should have the same length as the dataset"
                "len(order) = {} which does not euqals len(dataset) = {} ".
                format(len(order), len(dataset)))
        self._order = order

    def len(self):
        return self._size

    def get_example(self, i):
        if i >= 0:
            if i >= self._size:
                raise IndexError('dataset index out of range')
            index = self._start + i
        else:
            if i < -self._size:
                raise IndexError('dataset index out of range')
            index = self._finish + i

        if self._order is not None:
            index = self._order[index]
        return self._dataset[index]


class SubsetDataset(DatasetMixin):
    def __init__(self, dataset, indices):
        self._dataset = dataset
        if len(indices) > len(dataset):
            raise ValueError("subset's size larger that dataset's size!")
        self._indices = indices
        self._size = len(indices)

    def __len__(self):
        return self._size

    def get_example(self, i):
        index = self._indices[i]
        return self._dataset[index]


class FilterDataset(DatasetMixin):
    def __init__(self, dataset, filter_fn):
        self._dataset = dataset
        self._indices = [
            i for i in range(len(dataset)) if filter_fn(dataset[i])
        ]
        self._size = len(self._indices)

    def __len__(self):
        return self._size

    def get_example(self, i):
        index = self._indices[i]
        return self._dataset[index]


class ChainDataset(DatasetMixin):
    def __init__(self, *datasets):
        self._datasets = datasets

    def __len__(self):
        return sum(len(dataset) for dataset in self._datasets)

    def get_example(self, i):
        if i < 0:
            raise IndexError(
                "ChainDataset doesnot support negative indexing.")

        for dataset in self._datasets:
            if i < len(dataset):
                return dataset[i]
            i -= len(dataset)

        raise IndexError("dataset index out of range")