sampler.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
"""
At most cases, we have non-stream dataset, which means we can random access it with __getitem__, and we can get the length of the dataset with __len__.

This suffices for a sampler. We implemente sampler as iterable of valid indices. By valid, we mean 0 <= index < N, where N is the length of the dataset. We then collect several indices within a batch and use it to collect examples from the dataset with __getitem__. Then collate this examples to form a batch.

So the sampler is only responsible for generating valid indices.
"""


import numpy as np
import random

class Sampler(object):
    def __init__(self, data_source):
        pass

    def __iter__(self):
        # return a iterator of indices
        # or a iterator of list[int], for BatchSampler
        raise NotImplementedError


class SequentialSampler(Sampler):
    def __init__(self, data_source):
        self.data_source = data_source
    
    def __iter__(self):
        return iter(range(len(self.data_source)))

    def __len__(self):
        return len(self.data_source)


class RandomSampler(Sampler):
    def __init__(self, data_source, replacement=False, num_samples=None):
        self.data_source = data_source
        self.replacement = replacement
        self._num_samples = num_samples

        if not isinstance(self.replacement, bool):
            raise ValueError("replacement should be a boolean value, but got "
                             "replacement={}".format(self.replacement))

        if self._num_samples is not None and not replacement:
            raise ValueError("With replacement=False, num_samples should not be specified, "
                             "since a random permutation will be performed.")

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError("num_samples should be a positive integer "
                             "value, but got num_samples={}".format(self.num_samples))

    @property
    def num_samples(self):
        # dataset size might change at runtime
        if self._num_samples is None:
            return len(self.data_source)
        return self._num_samples

    def __iter__(self):
        n = len(self.data_source)
        if self.replacement:
            return iter(np.random.randint(0, n, size=(self.num_samples,), dtype=np.int64).tolist())
        return iter(np.random.permutation(n).tolist())

    def __len__(self):
        return len(self.data_source)


class SubsetRandomSampler(Sampler):
    r"""Samples elements randomly from a given list of indices, without replacement.
    Arguments:
        indices (sequence): a sequence of indices
    """

    def __init__(self, indices):
        self.indices = indices

    def __iter__(self):
        return (self.indices[i] for i in np.random.permutation(len(self.indices)))

    def __len__(self):
        return len(self.indices)


class PartialyRandomizedSimilarTimeLengthSampler(Sampler):
    """Partially randmoized sampler, implemented as a example sampler
    1. Sort by lengths
    2. Pick a small patch and randomize it
    3. Permutate mini-batchs
    """

    def __init__(self, lengths, batch_size=4, batch_group_size=None,
                 permutate=True):
        _lengths = np.array(lengths, dtype=np.int64) # maybe better implement length as a sort key
        self.lengths = np.sort(_lengths)
        self.sorted_indices = np.argsort(_lengths)

        self.batch_size = batch_size
        if batch_group_size is None:
            batch_group_size = min(batch_size * 32, len(self.lengths))
            if batch_group_size % batch_size != 0:
                batch_group_size -= batch_group_size % batch_size

        self.batch_group_size = batch_group_size
        assert batch_group_size % batch_size == 0
        self.permutate = permutate

    def __iter__(self):
        indices = np.copy(self.sorted_indices)
        batch_group_size = self.batch_group_size
        s, e = 0, 0
        for i in range(len(indices) // batch_group_size):
            s = i * batch_group_size
            e = s + batch_group_size
            random.shuffle(indices[s: e]) # inplace

        # Permutate batches
        if self.permutate:
            perm = np.arange(len(indices[:e]) // self.batch_size)
            random.shuffle(perm)
            indices[:e] = indices[:e].reshape(-1, self.batch_size)[perm, :].reshape(-1)

        # Handle last elements
        s += batch_group_size
        #print(indices)
        if s < len(indices):
            random.shuffle(indices[s:])
        
        return iter(indices)

    def __len__(self):
        return len(self.sorted_indices)


class WeightedRandomSampler(Sampler):
    r"""Samples elements from ``[0,..,len(weights)-1]`` with given probabilities (weights).
    Args:
        weights (sequence)   : a sequence of weights, not necessary summing up to one
        num_samples (int): number of samples to draw
        replacement (bool): if ``True``, samples are drawn with replacement.
            If not, they are drawn without replacement, which means that when a
            sample index is drawn for a row, it cannot be drawn again for that row.
    Example:
        >>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
        [0, 0, 0, 1, 0]
        >>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
        [0, 1, 4, 3, 2]
    """

    def __init__(self, weights, num_samples, replacement):
        if not isinstance(num_samples, int) or num_samples <= 0:
            raise ValueError("num_samples should be a positive integer "
                             "value, but got num_samples={}".format(num_samples))
        self.weights = np.array(weights, dtype=np.float64)
        self.num_samples = num_samples
        self.replacement = replacement

    def __iter__(self):
        return iter(np.random.choice(len(self.weights), size=(self.num_samples, ),  
                                     replace=self.replacement, p=self.weights).tolist())

    def __len__(self):
        return self.num_samples


class BatchSampler(Sampler):
    r"""Wraps another sampler to yield a mini-batch of indices.
    Args:
        sampler (Sampler): Base sampler.
        batch_size (int): Size of mini-batch.
        drop_last (bool): If ``True``, the sampler will drop the last batch if
            its size would be less than ``batch_size``
    Example:
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
        >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    """

    def __init__(self, sampler, batch_size, drop_last):
        if not isinstance(sampler, Sampler):
            raise ValueError("sampler should be an instance of "
                             "Sampler, but got sampler={}"
                             .format(sampler))
        if not isinstance(batch_size, int) or batch_size <= 0:
            raise ValueError("batch_size should be a positive integer value, "
                             "but got batch_size={}".format(batch_size))
        if not isinstance(drop_last, bool):
            raise ValueError("drop_last should be a boolean value, but got "
                             "drop_last={}".format(drop_last))
        self.sampler = sampler
        self.batch_size = batch_size
        self.drop_last = drop_last

    def __iter__(self):
        batch = []
        for idx in self.sampler:
            batch.append(idx)
            if len(batch) == self.batch_size:
                yield batch
                batch = []
        if len(batch) > 0 and not self.drop_last:
            yield batch

    def __len__(self):
        if self.drop_last:
            return len(self.sampler) // self.batch_size
        else:
            return (len(self.sampler) + self.batch_size - 1) // self.batch_size