synthesis.py 6.1 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14 15 16 17
import os
from scipy.io.wavfile import write
import numpy as np
from tqdm import tqdm
18
from matplotlib import cm
L
lifuchen 已提交
19
from tensorboardX import SummaryWriter
L
lifuchen 已提交
20
from ruamel import yaml
L
lifuchen 已提交
21
from pathlib import Path
L
lifuchen 已提交
22
import argparse
L
lifuchen 已提交
23
from pprint import pprint
24 25 26
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
27
from parakeet.models.transformer_tts.utils import *
L
lifuchen 已提交
28
from parakeet import audio
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
from parakeet.models.transformer_tts import Vocoder
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.utils import io


def add_config_options_to_parser(parser):
    parser.add_argument("--config", type=str, help="path of the config file")
    parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
    parser.add_argument(
        "--max_len",
        type=int,
        default=200,
        help="The max length of audio when synthsis.")

    parser.add_argument(
        "--checkpoint_transformer",
        type=str,
        help="transformer_tts checkpoint to synthesis")
    parser.add_argument(
        "--checkpoint_vocoder",
        type=str,
        help="vocoder checkpoint to synthesis")

    parser.add_argument(
        "--output",
        type=str,
        default="synthesis",
        help="path to save experiment results")
L
lifuchen 已提交
57

L
lifuchen 已提交
58

L
lifuchen 已提交
59
def synthesis(text_input, args):
60 61
    local_rank = dg.parallel.Env().local_rank
    place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace())
L
lifuchen 已提交
62

63
    with open(args.config) as f:
L
lifuchen 已提交
64
        cfg = yaml.load(f, Loader=yaml.Loader)
L
lifuchen 已提交
65 66

    # tensorboard
67 68
    if not os.path.exists(args.output):
        os.mkdir(args.output)
L
lifuchen 已提交
69

70
    writer = SummaryWriter(os.path.join(args.output, 'log'))
L
lifuchen 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    fluid.enable_dygraph(place)
    with fluid.unique_name.guard():
        network_cfg = cfg['network']
        model = TransformerTTS(
            network_cfg['embedding_size'], network_cfg['hidden_size'],
            network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
            cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
            network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])
        # Load parameters.
        global_step = io.load_parameters(
            model=model, checkpoint_path=args.checkpoint_transformer)
        model.eval()

    with fluid.unique_name.guard():
        model_vocoder = Vocoder(
            cfg['train']['batch_size'], cfg['vocoder']['hidden_size'],
            cfg['audio']['num_mels'], cfg['audio']['n_fft'])
        # Load parameters.
        global_step = io.load_parameters(
            model=model_vocoder, checkpoint_path=args.checkpoint_vocoder)
        model_vocoder.eval()
    # init input
    text = np.asarray(text_to_sequence(text_input))
    text = fluid.layers.unsqueeze(dg.to_variable(text), [0])
    mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32)
    pos_text = np.arange(1, text.shape[1] + 1)
    pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0])

    pbar = tqdm(range(args.max_len))
    for i in pbar:
        pos_mel = np.arange(1, mel_input.shape[1] + 1)
        pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0])
        mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
            text, mel_input, pos_text, pos_mel)
        mel_input = fluid.layers.concat(
            [mel_input, postnet_pred[:, -1:, :]], axis=1)

    mag_pred = model_vocoder(postnet_pred)

    _ljspeech_processor = audio.AudioProcessor(
        sample_rate=cfg['audio']['sr'],
        num_mels=cfg['audio']['num_mels'],
        min_level_db=cfg['audio']['min_level_db'],
        ref_level_db=cfg['audio']['ref_level_db'],
        n_fft=cfg['audio']['n_fft'],
        win_length=cfg['audio']['win_length'],
        hop_length=cfg['audio']['hop_length'],
        power=cfg['audio']['power'],
        preemphasis=cfg['audio']['preemphasis'],
        signal_norm=True,
        symmetric_norm=False,
        max_norm=1.,
        mel_fmin=0,
        mel_fmax=None,
        clip_norm=True,
        griffin_lim_iters=60,
        do_trim_silence=False,
        sound_norm=False)

    # synthesis with cbhg
    wav = _ljspeech_processor.inv_spectrogram(
        fluid.layers.transpose(fluid.layers.squeeze(mag_pred, [0]), [1, 0])
        .numpy())
    global_step = 0
    for i, prob in enumerate(attn_probs):
        for j in range(4):
            x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
            writer.add_image(
                'Attention_%d_0' % global_step,
                x,
                i * 4 + j,
                dataformats="HWC")

    writer.add_audio(text_input + '(cbhg)', wav, 0, cfg['audio']['sr'])

    if not os.path.exists(os.path.join(args.output, 'samples')):
        os.mkdir(os.path.join(args.output, 'samples'))
    write(
        os.path.join(os.path.join(args.output, 'samples'), 'cbhg.wav'),
        cfg['audio']['sr'], wav)

    # synthesis with griffin-lim
    wav = _ljspeech_processor.inv_melspectrogram(
        fluid.layers.transpose(
            fluid.layers.squeeze(postnet_pred, [0]), [1, 0]).numpy())
    writer.add_audio(text_input + '(griffin)', wav, 0, cfg['audio']['sr'])

    write(
        os.path.join(os.path.join(args.output, 'samples'), 'griffin.wav'),
        cfg['audio']['sr'], wav)
    print("Synthesis completed !!!")
L
lifuchen 已提交
163
    writer.close()
L
lifuchen 已提交
164

L
lifuchen 已提交
165

L
lifuchen 已提交
166
if __name__ == '__main__':
L
lifuchen 已提交
167
    parser = argparse.ArgumentParser(description="Synthesis model")
L
lifuchen 已提交
168
    add_config_options_to_parser(parser)
L
lifuchen 已提交
169
    args = parser.parse_args()
170 171
    # Print the whole config setting.
    pprint(vars(args))
172 173
    synthesis("Parakeet stands for Paddle PARAllel text-to-speech toolkit.",
              args)